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ABSTRACT: The work presented here goes along the research for the principles thar, starting from functio-
nal requirements, allow to compute the nature and value of tolerances on each part of a mechanism. In com-
parison with A.Clément's or J.Turner's works, our contribution is included in the formal description of the
elements of tridimensional tolerance chains. This approach is built upon two elements, a modelization of
geomesric errors and a method of computation for their propagation inside of a mechanism. The modeliza-
tion of geometric variations proposed here is founded upon the association of small displacement torsors to
the different rypes of deviations that can be met in a mechanism. From then on, determining the parts’ small
displacements under the effect of deviations and of gaps of the parts in a mechanism, becomes a computa-
tion of the composition of the modelized geometric errors. This computation of each part’s position yields
two results. First, the formal determination of the part's position in the mechanism in relation with the
chains of influent geometric variations influenced by the parts' surfaces. Then, the description of a combina-
tory of a mechanism's configurations. The application of this method shows the results obtained as well as
the possibilities of extension towards a tolerancing aiding tool.

KEYWORDS: modeling of geometric errors, tolerance determination, tolerance modeling, mechanism
theory.

1. ANEED : TO ESTABLISH A CONNECTION BETWEEN FUNCTIONAL
REQUIREMENTS AND PARTS' GEOMETRIC ERRORS

Geometric tolerances of the parts in a mechanism reduce the deviations so that they correspond to the func-
tional requirements : mounting, gap, contacts.... These prerequisites, expressed under the form of geometric
deviations, take on different values according to each part's variations. The impact of these unavoidable geo-
metric errors on the functional requirements then have to be assessed so as {o check the congruity of a
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mechanism (o its definition. That is why the relationship between a functional requirement and the different
geometric errors and gaps in a mechanism have (o be searched: for, so as to be able to deduce the indispensa-
ble geometric tolerances for each par. It is not always so. It is actually frequently more convenient to start

from a tolerance solution and then check that it guarantees the functional requirements.
- -

1.1. The classic approach : assessment of geometric tolerances

This first approach yields two computation methods: the analysis of tolerances and the synthesis of toleran-
ces. The assessment of tolerance is therefore carried out as follows : )

« A geomelric tolerance solution is proposed by an expert or a designer. It may or may not contain tole-
rance values.

= A model of the mechanism is established from these geometric tolerances : constraints due to the tole-
rance, constraints connected to contacts and to the non-interpenetration of parts.

¢ Two methods can be used. One checks that the tolerance values entail gap values that are compatible
with the functional requirements. It is the analysis of tolerances. One can also calculate an optimal tech-
nico-economical parting of tolerance values, that will then define the functional requirements. It is the
synthesis of tolerances.

This approach is the most current and it can be found in numerous works that rely on a one-directional or a
tridimensional modelization of the geometry [6] or [71. The main interest but also drawback of this approach
is in the predetermination of the structure of geometric tolerances. If this predetermination allows to free
oneself of the problem of the computation of the function that connects the geometric errors to the functional
requirement by replacing it by a function that results from the tolerances, it also yields a restriction of the
initial problem. The algorithm of optimization, analysis or synthesis of tolerances then implicitely determi-
nes the connections between the geometric tolerances and the functional requirements.

1.2. A complementary approach: determining geometric tolerances

This second approach, less developed today because more recent, precedes the assessment of the tolerance
in a complementary manner. Instead of hypothezising the existence of geometric tolerances, they are now
going to be calculated on the basis of the functional requirements and the structure of the mechanism. One
one-directional example of this can already be found in Pierre Bourdet's method of Al [5]. The determina-
tion of the tolerance is then carried out as follows :

* A modelization of geometric errors is associated to the mechanism's parts.

« The working requirements are gathered. A mechanism can then be studied for all its configurations or for
some particular working configurations. )

» The laws of geometric propagation of variations inside of the mechanism are then computed: they deter-
mine the relationships between functional requirements and geometric variations. ’

« The mathematic expression of the tolerances is carried out by the separation of the geometric behavior
laws on each part.

« These geomelric tolerances are assessed classically to compute tolerance values.

This building of tolerances from the influent geometric varations on functional requirements yields a suffi-
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cient conditions for minimal tolerance chains. We are now going to develop on this type of approach and
more specifically on the way to compute the link between geometric deviations ang functional requirements
inside of a mechanism.

2. A MODELIJIZATION OF GEOMETRIC ERRORS : SMALL DISPLACEMENT
TORSORS

The modelization of geometric errors adopted relies on several hypotheses that have to be clarified before
putting it into practise. These hypotheses were presented in details at the seminar before [4].

2.1. A modelization of geometric deviations

A geometric deviation is measured between at least two surfaces or more if 2 datum reference frame exists.
Nevertheless, from a computation point of view, it seems more interesting to use a model where a geometric
deviation is associated to each surface, thus avoiding to describe the combinatory of deviations between all
the surfaces of a part. The deviation then represents the difference between the part's nominal surface and a
surface of the same nature, tangent and external to the real surface. This surface is named substitution sur-
face. The geomelric variations and tolerances that wiil be computed hence correspond to a combinaiton of
deviations.

Another specificity of the model is to differentiate the componants of the geometric deviations of the surfa-
ces. Actually, the surfaces used for the mechanical connections most of the time have properties of inva-
riance in relation with certain translations or rotations. The invariance properties of these surfaces are a
Jortiori verified for small deviations. We will then distinguish the deviations that leave the surfaces invariant
from others as they play a particular role in the problem of positioning by contact We will call these varia-
bles undetermined.

Furthermore, because of the low amplitude of the part’ displacements caused by the geometric deviations,
we use a linearization of these by small displacement torsors. This goes along many other works among

which A.Clément's [6].
2.2. The three categories of torsors in the model

The modelization of a mechanism and of the parts that it is made of, relies on three categories of deviation
torsors.

The first is that of the geometric deviations between substitution and nominal surfaces. These deviations are
represented by a torsor whose shape is defined by the nature of the surface. For instance, the deviation torsor
at a point o of a plane s of a part P and of normal % is described by the torsor (1). The variables symbolized
by iare the componants of the small displacements that leave the surface globally invariant. The shape of the
varied deviation torsors is in thesis [1]. The influence of association of these deviations on functional requi-
rements is researched so as to define their limits and then tolerance them.
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The second category corresponds to the deviations between parts, i.e gaps. Their shape is determined by the
mobility and positioning degrees authorized by the contact. For instance, a contact that follows a line that
passes by o between a plane of normal z and a cylinder of axis carried by ¥ ; leads to the gap torsor (2)
where J is a gap componant and Ind an undetermined componant. The form of gap torsor is computed by
diffecent methods [1].

Ind, (1,2) Ind, (1,2)
{T,5} = Jey(12) ( Ind, (1.2) ¢)]
Ind_(12) j,(1,2)
Lastly, each part is submitted to a small displacement because of its positioning by its substitution surfaces,
by those of other parts, by the gaps and the position of the other parts. A torsor is then associated to each

part, named part torsor, whose componants are to be computed according to the gaps and deviations of the
mechanism and by the two following principles.

3. TWO COMPUTATION PRINCIPLES FOR THE PROPAGATIONS OF
DEVIATIONS IN MECHANISMS : COMPOSITION AND AGREGATION

The small displacement torsors give us a model of the deviations that distinguish a mechanism made of
nominal parts from one that has parts with deviations. We are now going to use this representation to com-
pute the consequences of these deviations on the positioning of the parts first throngh elementary positioning
chains and then globally. After expressing these positions with regards to the deviations and gaps of each
part, the relation between a functional requirement and part's deviations can be established.

3.1. Composition of an elementary chain of deviations

An elementary chain of deviations is the succession of small deplacements that occur in a link between two
parts in contact with each other by a single gap torsor. An elementary chain of deviations is then composed
aronnd each contact modelized by a gap torsor. By breaking up this gap torsor between the surfaces that
make up the contact, i.e the surface i of the part P/ and j of the part P2, the small displacement relation is
formed (3). The small displacements of the parts are expressed in a common reference noted R associated to
the nominal.

{T;) = ({Tvm} + {TPI/R})_( 1T /pa} + {TP‘I/R}) 3

By using relation (3), the expression of the small displacement for part P2 in relation with the parameters of
the chain of deviations /j with a k index can then be determined, i.e the deviation between the surface j of
the part P2, the position PI and the deviation of the surface i of P as well as the gap belween surfaces i
and J.

(T(k)Pl’/R} =- {rj/m) +( {Ti/p)} + {Tpl/g})“ {Ti/j} (4)

To illustrate the use of this relation, we are going Lo consider the chain of deviations represented by figure 1.
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This elementary chain of deviations shows a contact between parts P and P2 by a cylindrical surface lea-
ning onto a plane surface.

—
i (2/P2) i, (2/P2) +7,,5,0C oy p; iy (1/P1)
{Ty/p} = Ba/p2 Va/py +dr- cos® {Tipd =] iy (/P vy
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Figure 1 : example of an elementary chain of deyiations between a cylinder 2 and a plane 1

The application of relation (4) allows to determine! the expression (9) of the torsor of part P2 according to
the characteristics of the contact, the deviations and the small displacement of part P.1. Two componants of
P2's small displacement then appear as determined. Actually, the componants that are not circled contain
undetermined values and are thus degrees of mobility of P2/P1.

Oy py + Gy jgipg (2/P2) ~Ind_(12) iy (1/P1) +up o ~Ind, (12) + ...

(1 _Jd.
{T “parr} = iy (17P1) + By~ By py ~Ind (12) Fpy +Vprsp = (Vaypp +00) ~ T

Trse1 T Ve~ Yaspa — (I Wpi/R ™ Waspr — Indp(1,2) + ...

‘We have expressed the position of a part in a mechanism that has geometric deviations. Nevertheless, a part
is not always positioned only by a link.

3.2. Agregation of elementary chains of deviations

In the general case, there exist g links between a part P and the surrounding parts. This entails g possible
expressions of the small displacement torsor, according to the varied gap, position and deviation parameltess
of each elementary chain of deviations. Every one of these g links yields the suppression of a certain number
of degrees of mobility and hence partially positions the part. Similarly, these links contribute to the positio-
ning of the part but also create local mobilities, the undetermined. These mobilities will, in the case where

1. For presentation reasons, this expression is simplified by the fact that the surfaces are oriented according to the axes of
the coordinate system and an expression point that is the same for ali torsors. The method is nevertheless general.
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they do not correspond to a mobility of the part, be determined by other elementary chains of deviations,

Determining the global displacement of a part {T*; 3} then consists in posing the equality of the different
expressions coming from all the elementary chains of deviations and solving the system (6) in relation with
the contact variables undetermined. That is 10 say, posing the equality of the small displacement expressions
and trying to express the local degrees of mobility according to the set of the connection elements.

{T*prl = {Tmpxk} = {T(Z)P_/R} = = {T%pR) 6)

These g-1 equalities build up a system of linear equations of m= 6(g-1) lines (6 for each torsor) with 2 unk-
nowns (the undetermined). Such a system is genera.llly potentially over or under determined. This means that
there exist undetermined variables whose value cannot be calculated ( cinematic mobility degrees ) and
others for which there will on the contrary be an over-abundance of definitions ( hyperstatism degrees). In
such a context, the only possible solution is given by the Gauss method of the partial pivot. Its application
then leads to a system whose shape is given here-under.

a))Ind; +a,Ind) +...... +ayInd) = b,
cInd, +...... +¢, Ind = b
22 2 2n 0 on 2 (1)
k Ind + ... +k Ind =b, N
0= 5r¢1
: (2)
0= Em

The first part of system (7}, of rank r, allows to calculate { T*p } by substituting the r undetermined expres-
sions in one of the expressions of the small displacement of the part {T(k p/R} .

The second part of the system gives a set of compatibility conditions that, if they are verified, validate the
expression of the small displacement. The solution for a system of undetermined values for each part of a
mechanism, then the gathering of the expressions of the small displacement componants of all the parts
allow to calculate each part's small displacement by recurence. The parts’ small displacements thus determi-
ned then communicate the influent deviations and only these. The others are actually eliminated by an alge-
braic simplification of the expressions. It can also be noted that the orientation of the elementary chains of
deviations is not necessary. The problems of anteriority of positioning can hence be forgotten.

3.3. Properties of the compatibility system

The conditions of compatibility in system (7) only contain distorsion and gap componants, With this system,
on the one hand the meaning has be looked for by placing the modelization inside of the theory of mecha-
nisms; on the other hand, the constraints it entails on the propagation of deviations in a mechanism have to
be determined.

The proposed formulation holds an equivalence between the undetermined variables and the cinematic
variables. But the theory of mechanisms shows that the degree of hyperstatism of a mechanism is :
H = |M,-M_| where M; the static mobility is': M = -6 (q~1) +n = n-m and M, the cinematic mobility
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is: M, = n-r.Part2 of system (7) is then found fo correspond to the degrees of hyperstatism of the mecha-
nism. Furthermore, the model completes the theory of mechanisms by bringing an explanation of the geome-
tric conditions induced by every degree of hyperstatism thanks to the formal solation of equalities (6).

These conditions have to be verified whatever the valoe of the parts' geometric deviations, which is defined
as random. The links between gaps are hence searched for. A new matricial writing is nsed (8), equivalent to
the compatibility conditions (7) and where E is the set of deviations and J that of gaps.

0=B(JE)eC-J=D(E) &)

This system contains more gap componants than equations. It is under-determined. There is therefore a com-
binatory of the sets of gap componants from which the value of the other gap componants can be calculated.
This yields a subset of the gap componants whose value can be imposed ( in general O which means contact).
The other componants are then calculated by the resolntion of system (8). Every one of these sets defines a
configuration of the mechanism, i.¢ a typology of the contact between parts ( domirant leaning plane,... )

The development of the combinatory of the sets of possible gap solutions ensures the numbering of all the
configurations of a mechanism, hence of all the potential behaviors for tolerancing. Those that correspond to
the working are then chosen.

But system (8) can also be regarded as a set of constraints to calculate the case of the most unfavorable wor-
king, by optimization. This approach is mostly useful if the parts are not solidary and if the set of configura-
tions corresponding to the working is not known.

3.4. An example of the search for the extreme configurations of 2 mechanism

The result of the calculation of the configurations is illustrated by the example of the rail represented in
figure 2. The application of both the hereabove-defined principles, programmed into a formal computation
software, allows to obtain the displacements of parts B and C as well as the compatibility system (9).

5> A
X
9 ¢ 5 £
= (4]
3 8 5 1
) N x
A ¢ 2

Figure 2 : definitions of the parts and notations of the rail

1. The notations used here are the same as in system (7).
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As an example for the reading of a compatibility system: the second equation that follows shows that there
exists an over-abundance of orientations around the axis ¥, between the links [8,2) and [9,3] of the parts A
and C.

0=-B[2, A1+ B[S, B) + B3, A] - BI6, B) + B[7, C) - B[S, C] - Hry, 5, 21 +Jlry, 6, 7] + Jlxy, 9, 3]
0=[2,A] - B8, C] - B3, A) +B[9, C] + JIry, 8, 2] - J{ry, 9, 31 ©

This system of 2 equations with 4 gap unknowns in the orientation is solved by fixing 2 of the 4 gaps in 0,
which expresses the orientation identity given by the contact. Each one of the 2 remaining gaps is then cal-
culated according to the orientation deviations of the planes contained in each equation. These configura-
tions describe the set of types of compatible contacts. Every contact of a configuration can then be described
in terms of partial or full contact as proposed by Shodi and Turner [7].

) [

Figure 3 : configurations determined from the compatibility system of the mechanism

‘The computation of the law of propagation of deviations is carried out after the selection of one or more of
the configurations that represent the mechanism's behavior. In the case where working configurations are not
known, system (9) will be added as a constraint when computing tolerance values.

4. DETERMINATION OF THE PROPAGATION OF DEVIATIONS INSIDE OF A
MECHANISM

With the expression of the parts' small displacements, the propagation of deviations inside of a mechanism
can be calcunlated, which is our initial tacget. This will also allow s to reach the corresponding geometric
tolerances.

4.1. Calculation of a functional requirement as a function of deviations

The knowledge of the parts’ displacements in relation with deviations allows to express a functional require-
ment in two operations: a new composition operation of the small displacements as well as a localization
and orientation operation. For a functional requirement / between the surface i of part P/ and j of part P2,
the composition of the small displacements is carried out and then, the comoment with the torsor of the pluc-
kerian coordinates {P “) i/j} . This torsor gives the direction of the deviation and is expressed in all points of
the domain where the functional requirement £, 4 (1) is exerted.
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fiy MW= {T;} PPt = [( {T, p} + {T*pl/a}j‘[ {T,/pz} + {T*pasm} J] O 10

As an example, function (11) represents the expression of a functional requirement according to the axis Z
between surfaces 4 and 1 of the mechanism in figure 2. This mounting requirement, f, ,, (1) >0 is relative to
a configuration of the mechanism and to one point parametered by xc[4, 1} and yc[4, 1).

u[l, Al +uf3, A} +u[4, B] + u[6, B} +u{7, C] +u[9, C] + (-[5, B] + (8, C] + 16, B - 117, C]) x[6, 7} +
({2, A] - B(8. C] - 1{3, Al + 419, C]) XI9, 3] + (-B(2. Al + B[S, B] + {1, A) - 7[4, B]) xc[4, 1} + (B{1. Al +
B3, A] + B4, B] + BL6. B] + B[7, C] + B(9, C)) yc[4, 11> 0 an

The formal expression of a functional requirement is thus obtained in all points of a domain by its relation to
the deviations of the parts of a mechanism. This expression is minimal for, after simplification, it conains
only the deviation parameters that directly concern the functional requirement. In the case of partial con-
tacts, it also contains contact parameters that are nseful when computing tolerances.

4.2. Resultant mathematic tolerance in deviation space

We formally know the causes of the positioning of the parts of a mechanism according to the parts’ devia-
tions. In this context, determining the tolerances of the parts only means distinguishing the terms of the
deviations according to the part they belong to. A set of constraints can thus be determined : they build up a
mathematic structure of geometric tolerances. These mathematic tolerances are constraints that are both
necessary and sufficient for they correspond exactly to the section of the functiona! requirement the part fills.
This results in tolerances with no transfer.

For instance, for part B, constraints (12) represent the tolerance that corresponds to the functional require-
ment f,,, (1) as well as the resultant of the partial contact between surfaces 6 and 7. Where ¢ and ' are the
values of tolerance that will be computed with respect of functional requirements.

uf4, B} + u[6, B] + (76, B] -B[5, BI) x[6, 7] + (B[S, B] - ¥4, BY) xc[4, 11 + (B{4, B] + B[S, B]) yc[4, 1) <«
&&
(-B[5, B] +7(6, B]) (-x[6, 7] + xc[6, 7]) >= ¢’ (12)
~

These constraints apply in all points of their respective surfaces; the first constraint therefore has to be distri-
buted npon surface 4 and the second one upon surface 6. Because of the linearization of deviations, only the
constraints at the edges has to be expressed. In the next paragraph, the modelization of a standardized geo-
metric tolerance will allow us to show the result of this computation via an example.

4.3. The modelization of standardized geometric tolerance

Evep if the method proposes a solution for a direct geometric tolerance, it can be of interest to use the prin-
ciples developed bere to analyse or synthesize another tolerancing solution, while still keeping the function
of propagation of deviations. The two composition principles, and potentially that of agregadon, of the ele-
mentary chains of deviations are applied to the datum surfaces of the substitution part on the nominal part. In
this context, the functional requirement computed is the tolerance zone itself. These imposed tolerances are
expressed mathematically and then used instead of the direct tolerances, even if they are more demanding.

Figure 4 gives an example of the modelization resulting from a dimensional tolerance. The 8 constraints are
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the result of the application of 2 tolerances (minimum and maximum dimension) on the 4 corners of the rec-
tangular ends of the part.

Compositiof deviation chains

v

resulting mathematic tolerance

\4

0.1 <= -10%(b[1, A] + b[3, A]) - 10%(-c[1, A] +c[3, A]) + u[l, A} +u[3, A] <= 0.1
-0.1 <= 10%(b[1, A] + b[3, A]) - 10%(c[1, A) + ¢[3, A]) + u1, A] +u[3, A] <=0.1

0.1 <=-10*(b{1, A] +b[3, A]) + 10%(<[L, A) +¢[3, A]) + u[1, A] + u[3. A] <= 0.1  * representation in the
-0.1 <= 10%(b[1, A] + b[3, A]) + 10*(-c[1, A] + c[3, AJ) + u[1, A] + u[3, A] <= 0.1 deviation space

—>

Figure 4 : modelization of a dimensional tolerance
5, CONCLUSIONS AND PERSPECTIVES -

The method developed here allows to systematically determine the influence of geometric errors on the
small displacement of parts in a mechanism. It therefore uses two original principles of composition and
agregation of the elementary chains of deviations. These principles are founded upon the introduction of
undetermined variables. The knowledge of the causes of the sall displacements of a mechanism's element,
in terms of geometric deviations, not only allows to formally express the functional requirements but also
opens onto 2 mathematic tolerance. This tolerance, expressed in the deviation space, is both necessary and
sufficient as regards the functional requirement. The results obtained for the modelization of geometric tole-
rances also seem (0 compare with those obtained by A.Ballu and L. Mathieu [3] in the field of control.

Apart from the examples mentioned here, the proposed methodology has already been positively put into
practise in numerous complex cases, including industrial ones(1]. Trials have also been carried out in the
field of manufacturing tolerancing and in that of the modelization of positioning in manufactoring [2).

To this aim, the concepts have been programmed with the help of a formal computation software in 2 com-
puterized model [9]. The current orientation of our work hence concerns the possibilities of extension
towards a tolerancing aiding tool by adjoining ‘specific methods of analysis and synthesis of tolerances. The
second subject of research is the translation of these mathematic geometric tolerances into their standardized
expression. Actually, such a translation will not always be possible, which will obviously lead to a questio-
ning of the possibilities of expressions of standards.
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