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Probe calibration on a coordinate measuring machine is dependent on the 
accuracy with which the center of  a reference sphere can be located. In this 
article, a theoretical model  for sphere is fitted to a set of  sampled surface 
points using the least-squares criterion. An analysis is conducted of  various 
errors involved during the steps leading to the identification of the sphere 
and location of  its center. The errors include those associated with surface 
accessibility for sampling, points sampling strategies, optimization algorithm, 
and probe diameter versus reference sphere diameter. Inferences are drawn 
regarding the relative influence of these errors, and a calibration strategy is 
proposed as a function of  sampled points, optimization algorithm, and the 
geometric surface involved. 
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Introduction 
The inspection of mechanical parts using a coordi- 
nate measuring machine (CMM) requires the use 
of several probes with different dimensional charac- 
teristics. The calibration of these probes involves 
the measurement of a reference sphere, the center 
of which represents the origin of the measurement 
coordinate system. The choice of the measured 
points on the spherical surface and the optimization 
algorithm used to fit a geometrical model to 
the sphere result in a center location error. This 
error affects the results of all subsequent measure- 
ments. 

The aim of this article is to estimate this error 
when the probe calibration is performed by measur- 
ing a portion of the reference sphere (Figure 1). 

A simulation model is used to evaluate the error 
made during identification of the geometric ele- 
ment involved, and an experimental study is con- 
ducted to validate simulation results. 

Finally, a calibration procedure is proposed that 
improves the accuracy with which the sphere center 
is located and thus, overall probe calibration. 
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Sphere identification by the 
least-squares criterion 
An optimized theoretical model is fitted to the set 
of n points sampled from the real surface. 1,2 In this 
article, the commonly used least-squares criterion 
is used. 

The optimization method involves the minimi- 

zation of the quadratic sum W = ~ d~, where di is 
i =1  

the deviation between measured points and the op- 
timized surface. An opt imum solution is reached 
when the p parameters that define the p order sur- 
face involved are computed. 3 For a sphere, four pa- 
rameters are required: three parameters (u, v, w) 
for center location and one 8r for the radius. 

The Surface is represented by a set of n points 
• . - )  

~,-(xi, Y;, z;) In the CMM coordinate system ~ ( 0 ;  x, . - )  . . )  

y,z). Those points represent the center of the spher- 
ical probe (radius r) in contact with the spherical 
reference surface, radius R (Figure 1). The associ- 
ated sphere is thus computed step by step as 
follows1.4: 

First  step 
Using four points belonging to the set of measured 
points D,,., an ideal nominal sphere close to the solu- 
tion is computed• O'(Xo, Yo, Zo) denotes the nominal 
sphere center and R 0 its radius• 

Using a transformation, the measured points 
• I l -~" ~ '  are expressed m ~ (O ; x, y, z) to obtain the set 
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Figure 1 Spherical cap measured by CMM probe 
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Figure 2 Ideal nominal sphere 

Mi (X/; Y,.; Zi) with Xi = xi - Xo; ~ = Yi - )to and 
Z,= z , -  Zo. 

S e c o n d  s tep 
For each point M;, the corresponding theoretical 
~oint Mth i on the ideal nominal sphere, the normal 
ni and deviation #* are computed (Figure 2). 

Th i rd  s tep 
In this step, a small displacement ~Mthi of each theo- 
retical poin tMth i ,  and a small variation of the radius 
8rare applied to the nominal sphere. Then, the devi- 
ations ei are defined by Equation (1): 

ei = ~* - ( ~ M t h i "  -h i )  - -  8r (1) 

Bourdet  et aL : Data po in t  distr ibut ion 

~Mthi is,expressed using the displacement of the 
center Do.(U, v, w) and: 

ei = ~* - (u cos/t~- cosSi + v cos/ti sinSi 
+ w sin/t~. + 8r) (2) 

The least-squares method is used to find U(u, v, 
w, Sr), which minimizes the sum of squares of the 
deviations e~. 

The problem is more conveniently formulated 
as the solution to the linear system: 

A .  U = B (3) 

where the matrix A and B are given in Appendix A. 
The fitted sphere is then known in the CMM 

coordinate system ~ by its center: O*(X*,  Yo', Zo ~), 
w i t h X *  = x  o + u; Y* = Yo + v; Z *  = Zo + w, and 
its radius R* = R o + 8r. 

The radius R* represents the sum of the radius 
Rof the spherical reference surface and of the radius 
r of the spherical probe. 

Val ida t ion  step 
The fol lowing quantities are computed: 

• the deviations d; between the measured points 
on the spherical surface and the best fitting 
sphere 

d i =  ~/(xi - X~) 2 + (Yi - y~)2 + (z~.- Z~') 2 - R* 

• the optimized deviations e; given by Equation 
(2) 

• the criterion of the small displacements s; = 
d i - e i 

The result is validated if s ; -  < 10-2 p,m. If not, another 
optimization must be performed using the best fit- 
ting sphere as the new nominal sphere. 

Uncertainty in identified surface parameters 
Eva lua t ion  o f  e r ro rs  in the p a r a m e t e r s  
Using CMM data, the methodology described pre- 
viously leads to an opt imum solution based on the 
least-squares criterion. However, regardless of the 
CMM or reference sphere used, CMM data are never 
error free, and the small uncertainty associated with 
the position of each sampled point leads to an un- 
certainty in the position of the center of the refer- 
ence sphere. The computat ions performed during 
the optimization procedure amplify this uncertainty. 
This error amplification is influenced by the number 
of sampled points, their location on the spherical 
surface, and the error inherent in the measurements 
returned. An evaluation of the quality of the results 
returned can be undertaken. 

A first estimate can be obtained by computing 
the condition number of matrix A5,6: 

K(A) = cond(A) = IAI/IA-1/ (4) 
where A-1 denotes the inverse of matrix A and H 
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a matricial norm. This number evaluates the sensi- 
t iv i ty of the solution U of the linear system in Equa- 
tion (3) with respect to the variation in the data. 

A linear system for which K(A) >> 1 is called ill 
conditioned, and a linear system for which K(A) -- 
1 is called well conditioned. 5,6 

Additional information about the condition 
number is developed in Appendix B. 

Computation of the covariance matrix could 
complete this approach and provide an estimate of 
the standard deviation of the results. 6,7 This ap- 
proach was developed for the circle by MacCool. 8 
Lotze has estimated the uncertainty of the parame- 
ters and the form element itself using random error 
propagation. He concluded that "each extrapolation 
area far from measured points provide a great error 
magnification. ''9 

Forbes has evaluated numerical stability of dif- 
ferent algorithms for finding least-squares best fit 
sphere to data using statistical methods. 1° Particu- 
larly, he showed that the linear least-squares fitting 
algorithms work well for data scattered over a great 
spherical cap, but become unstable for near planar 
data. 

A numerical method (not statistical) that evalu- 
ates the error of optimized parameters and thus the 
uncertainty in the center location of the measured 
sphere is proposed. 

The reference sphere is assumed to be known. 
Simulated points are generated by adding an error 
to points on the surface of the perfect sphere. 

We characterize the error associated with a 
point Mi by a deviation ~:~ along the normal to the 
sphere. 

This deviation includes all possible error 
sources: geometrical errors of the CMM, the resolu- 
tion of the scales, probe technology, and the mea- 
surement direction of the probe. 

~:/ takes on any value between two limiting 
values: 

~%min <- ~% - ~%max 

As the spherical surface is defined by n points, a 
total of 2" spheres can be identified by the algorithm 
previously described, where for each sphere, the 
set (~%) 1 --- i -< n is a combination of ~%max and 
~imin. 

For each sphere j, 1 --- j -< 2 n the (uj, vj, wj, 8rj) 
parameters are computed according to the pre- 
viously described algorithm. The origin of the CMM 
coordinate system is the reference sphere center 
and Ecj, defined by Equation (5), represents the er- 
ror of location of the sphere center: 

Ecj : (Xo~ .2 + Yo~ 2 + ZOO2) 1/2 (5) 

The maximum deviation is defined by 

Ecmax = max {Ecl~ 1 -< j - 2 n (6) 

Generally, the best estimates of the parameters are 
obtained when sampled points form a symmetric 

Figure 3 Spherical cap defined by angle cx 
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Figure 4 Distribution of points on the spherical cap 
for a given value (x 

pattern and are uniformly scattered over the surface 
of the sphere. 

However, a single probe with conventional X, 
Y, Z motion cannot access all areas of the spherical 
surface, and sampling will usually be restricted to 
a spherical cap defined by an angle (x (Figure 3). 
For a probe with a conical tip (r < 0.02 mm), this 
angle is limited to (x = 15% In addition, spherical 
features found on mechanical parts often come in 
the form of a portion of a sphere. Clearly, the prob- 
lem posed by the identification of a sphere using n 
points sampled over a spherical cap must be 
studied. 

Simulation results: computation of  the error 
Ecmax 
The simulations are performed with five, nine, and 
13 points scattered as shown in Figure 4: 

• one on the top of the spherical cap 
• the rest, in sets of four points, on several paral- 

lel planes. 

These distributions of points are commonly used 
in calibration procedures. 
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Figure 5 Simulation of the error  Ecmax in function 
of the number of sampled points 
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Ecmax for ~ > 40 ° Figure 6 

The reference sphere radius is R = 10 mm and 
that of the probe is r = 1 mm. 

The computation of Ecmax [Equation (6)] was 
performed for different values of angle o~. 

In order to obtain an upper bound of the error 
Ecmax, we suppose in the simulations that #;max 
and ~;min are constant for all points: ~max = 1 /~m, 
#rain = 0/~m. 

Notice that, because of the definition of ~:; along 
the normal to the sphere, only the value of A~C = 
~max - ~min influences the value of the maximum 
error of location of the sphere center Ecmax. 

Because of the linearity of Equation (3), Ecmax 
could be evaluated for any value of A~ different 
from 1 /~m. 

Figures 5 and 6 show that, regardless of the 
number of points, for e -> 50 ° Ecmax values are very 
close and vary between 3.5/~m (e = 50 °) and 1 /~m 
(e = 110o). 

For e < 50 °, Ecmax values increase exponen- 
tially up to 80 /~m. Therefore, probe calibration 
through measurement of a spherical cap defined 
by e < 50 ° is unsuitable. 

Notice that the result does not improve when 
the number of measured points is increased. Re- 
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Table 1 Ecmax = kl • A#. c~'2 

Points number kl k2 

5 4,302 1.860 
9 5,199 1.859 

13 4,715 1.853 

suits are better for five points because the set of 
five points is included in the nine and 13 points 
distribution (Figure 4), and due to the algorithm, 
the supplementary points lead to a greater error in 
the location. The simulations with nine and 13 
points distribution cannot be compared. Effectively, 
the set of nine points is not included in the set of 
13 points. 

Each curve can be approximated by a function 
of the form Ecmax = kl • A# • cx*2, where k 1 and k 2 
depend on the number of the sampled points 
(Table 1). 

A study of the condition number confirms the 
previous observations. In fact, for five, nine, and 
13 points, Table 2 shows that for the smallest values 
of or, the magnitude of the relative solution error 
can be 102 or 104 times higher than that of the rela- 
tive data error. In this case, the system is ill condi- 
tioned. On the other hand, the system is well condi- 
tioned for the highest values of cx. This is similar to 
Forbes's result. 

The computation of the covariance matrix gives 
an estimate of the standard deviations of the param- 
eters (u, v, w, 8r), but, for the smallest values of e, 
this does not provide precise information. The study 
of the correlation matrix shows that, due to the 
points distribution (scattered symmetrically with re- 
spect to the z-axis) the parameters w and 8r are 
strongly dependent, especially for the smallest val- 
ues of o~. MacCool provided a similar result for the 
circle. 8 

The results of the simulations show that five 
points distributed as shown in Figure 4 are sufficient 
to adequately measure a reference sphere. How- 
ever, accurate location of the center of a spherical 
cap defined by e < 50 ° is not possible. Experimenta- 
tion confirms this result. 

Experimentation and comparative evaluation 
Measurement of a sphere defined by a spherical 
cap. A reference sphere with a radius R = 10 mm 
was measured on a CMM with five and nine points 
scattered according to Figure 4. 

The measurement directions are coincident 
with the CMM axis (x, y, z). For a given point on the 
sphere, this measurement axis is chosen closest to 
the normal of the sphere at this point. 

The maximum value of the spherical cap that 
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Table 2 Condit ion number: four parameters algorithm 

10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 ° 1 O0 ° 110 ° 

5 points 27 117 11 952 
9 points 3 809 > 105 

13 points 66 566 559 

745 259 113 46 22 11 6.85 4.58 3.51 
1 543 326 135 58 29 16 9.6 6.16 4.3 

932 327 118 70 36 20 11.85 7.58 5.18 

could be sampled by the probe used (r = 2 mm) 
was o~ = 90 ° . The min imum value that could be 
sampled (a = 30 ° ) was imposed by the CMM 
softwa re. 

Each sphere measurement was repeated 50 
t imes for each value of a: 30 ° , 40 ° . . . 90 ° . For the 
50 replicate measurements and at each angle o~ of 
the spherical cap, the error Eck (1 -< k -< 50) was 
estimated. An experimental value for Ecmax was 
defined as 

Ecmax E = max {Ec,} 1 <- k <: 50 (7) 

Figures 7 and 8 compare simulated and experi- 

20 ~ i J 

,.Pi 
~ \~" - -  s imula ted  E c m a x  (5 pts)  

, 

' i  ............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t ................. ! ...... i .................... 

o .................. .................. l-.- 
20 30 40 5o 60 70 80 90 Ioo 110 

Spher ical  c a p  angle  (o) 

Figure7 Comparison ofs imulated and experimen- 
tal Ecmax for five probing points 

mental values of Ecmax. It can be seen that experi- 
mental values of Ecmax E fo l low the general trend 
of the simulated ones, and that simulated values 
obtained with A~: = 4/~m provide an upper bound 
for experimental values of Ecmax. The apparent 
value of A~: required to fit the experimental values 
varies with a. This observation is more readily ap- 
parent in the case of nine sampled points (Figure 
8) and wil l  be explored further in the fol lowing sec- 
tions. 

An experimental method used to estimate val- 
ues of A~ as a function of the angle a that could be 
used in the simulations is developed. 

This method only requires measurements of a 
point on a plane surface. 

Experimental estimation of ~ .  The error # associ- 
ated with a measured point may be determined ex- 
perimentally. For this purpose, repeatabil ity tests 
of a measured point on a plane surface were con- 
ducted with a CMM. 

The plane surface has orientation angle/3 as 
shown in Figure 9. [3 can vary between 0 ° and 90 °. 
The direction of the probe is the CMM Z-axis. 

Two measurement directions are tested: 0 ° < 
/3 < 45 °, the direction of the Z-axis, and 45 ° < /~  < 
90 ° , the direction of the Y-axis. 

For each orientation/3, the measurement of the 
same point M is repeated 50 times. The returned 
coordinate values of the point are rounded off to 

i ~;{ %\I~'~ ~ -e- experimental Ecmax (9pts) I ~ direction 
15 -~ . .~ \~ . - -~  ...... - -  simulated Ecmax (9 pts) 1 0°< 13 < 4 5  ° 

o ~ ' ~  ~ 45°< p<9°° 
20 30 40 50 60 70 80 90 100 l lO 

Spher ica l  cap  angle  (°) i ~ "-- Y 

Figure8 Comparison of simulated and experimen- 
tal Ecmax for nine probing points Figure 9 Measurement direction 
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Table 3 (&~) evaluated from a measured point on a plane surface 

/3 (°) 0 ° 5 ° 10 ° 15 ° 20 ° 25 ° 30 ° 35 ° 40 ° 45 ° 
Measurement direction: z axis 

~(/.¢ m ) 2 1 1.16 1.21 1.3 2.3 2.2 1.1 2.3 2.1 

/3 (°) 45 ° 50 ° 55 ° 60 ° 65 ° 70 ° 75 ° 80 ° 85 ° 90 ° 
Measurement  direction: y axis 

A~(/.cm) 1 1 2.1 1.4 3.6 4 1.2 2 1.4 4 

Table 4 Comparison between (Ecmax) s and (Ecmax) E 

~(°) 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 ° 

five probing points 
(Ec max)E (/~m) Figure 7 14 9 5 3.9 2.9 2.9 2.9 
(Ec max) s (/~m) 16.5 10.5 5.5 4 6.3 2.5 4.5 

with wi th wi th wi th wi th wi th wi th 
w i t h ~ :  = max(~c(/3))E ~ = 2.2 ~ = 2.3 ~ = 2 ~ = 2 &~ = 4 ~ = 2 ~ = 4 
where/3 = {0;(x} Table 3 

nine probing points 
(Ec max) E (/~m! Figure 8 9.7 5.89 4.9 2.8 3.9 2.8 2.8 
(Ec max) s (/~mt 13.8 8.6 5.3 3.5 5.4 2 3.6 

wi th wi th wi th wi th wi th wi th wi th 
w i t h ~ #  = max(~(/3))E ~# = 2.2 &~ = 2.3 ~ = 2.3 ~# = 2.2 / ~  = 4 / ~  = 2.3 &~ = 4 
where/3 = {0;e/2;~x} Table 3 

the micrometer due to the resolution of the scales. 
Using coordinate values, the values ~j (1 -< j -< 50) 
are computed and then (~ )E  is determined for each 
angle/3 (Table 3): 

(~c(/3)) E = max {~/(/3)} - min {~/(/3)}1 -< j -< 50 

(8) 

Simulations using ~#s and comparison. Experimen- 
tal results obtained from measurement of a point 
on a planar surface (Table 3) enable the determina- 
t ion, for a given angle e, of the max imum value, 
noted A#s, corresponding to the set of measured 
points: 

• for five points, ~ s  = max {~( f l ) } ,  where/9 E~ 
{O °, ~} 

• for nine points, ~ s  = max {~¢(fl)}, where/3 E~ 
{O °, ~/2, ~x} 

For each value ~, A~s is used in the simulat ions for 
five and nine points to evaluate the maximum error 
of location of the sphere center noted Ecmaxs. 

Ecmax s and Ecmax E [evaluated using Equation 
(7)] are compared in Table 4 for different values of 

e. It can be seen that simulated Ecmax s value is a 
good estimation of the experimental one. 

Therefore, the value ~ s  evaluated by measur- 
ing a point on a planar surface (see previous sec- 
tion) can provide a good approximat ion of the value 
~ ,  which can be used to simulate the uncertainty 
in the sphere center location. 

Conclusion. The proposed s imulat ions provide a 
good estimation of the max imum error of location 
of the sphere center Ecmax, which depends on the 
area of the spherical cap. This supposes the knowl- 
edge of the range ~ :  that is evaluated by measuring 
a point on a planar surface wi th different orienta- 
tions. But the results obtained wi th the previous 
algori thm show that for the smallest values of 
the angle e, the error of location of the sphere 
center leads to an unacceptable cal ibration of the 
probe. 

In order to improve the probe calibration, we 
propose another mathematical model in which the 
radius of the reference sphere is assumed to be 
known. The optimizat ion is only performed on the 
three parameters U'(u, v, w). 
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Table 5 Condit ion number: three parameters algorithm 

10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 ° 100 ° 110 ° 

5 pts 80.9 19.3 
9 pts 117.2 28.6 

13 pts 136.2 33.4 

8 4 2.2 1.3 1.2 1.7 2 1.7 1.2 
12.2 6.5 3.8 2.5 1.7 1.4 1 1.12 1.11 
14.3 7.7 4.7 3 2.1 1.6 1.25 1.1 1 

Forbes proposed other models for f i tt ing 
spheres to small caps that do not assume a fixed 
radius. 

Improvement of probe calibration 
An attempt is made to define an algorithm used to 
determine the position of the sphere center with 
better accuracy. 

For this purpose, an optimization on the three 
small displacement parameters u, v, w is performed 
assuming that radius R* is known with an accuracy 
AR*. For probe calibration, R* = R + r, where r 
represents the probe radius and R the reference 
sphere radius. 

The problem is now formulated as the solution 
to the linear system A' • U' = B', where A' is de- 
duced from the matr ix A by suppression of the last 
line and column, and B' is deduced from the vector 
B by suppression of the last line (see Appendix A). 

For small values of o~, optimization with three 
parameters leads to much lower values of the condi- 
t ion number: K(A) < 10 2 decreasing rapidly (Table 
5). On the other hand, correlation matrix shows that 
parameters are then independent. 

Simulat ion runs with five, nine, and 13 points 
under the same condit ions and R* = 11 ram. Ecmax 
values result ing from a simulat ion with three pa- 
rameters (u, v, w) are compared in Figure 10 to 
those result ing from a simulat ion with four parame- 
ters (u, v, w, ~r) using five sampled points. It is 

7 0  : . . . . . . . . . . . . .  . . . . . . . . .  t . . . . . . . . . .  ~ . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

56 i [ ]  5 p t s 4 p a r a m e t e r : s  . ......... ....... 

42 
I ! 

i i i i i i ~ 

o =....=.. =... = . - .  
10 20 30 40 50 60 70 80 90 100 110 

Spher ica l  cap  ang le  (o) 

Figure 10 Comparison of simulat ions using algo- 
r i thms for optimization over four and three param- 
eters 

readily seen that f ix ing the value of the radius im- 
proves the location of the sphere center. Under this 
condit ion, the value of Ecmax remains less than 3 
/~m for 15 ° < o~ < 70 °. This result remains valid for 
sampling with nine and 13 points (Figures 10 and 
11). 

A small variat ion AR of the given radius does 
not affect the previous result: a variat ion AR = 1 
mm (AR >> AR*) results in a variat ion of Ecmax < 
1 0  - 2  ~ m .  

This algorithm is therefore efficient for probe 
calibration, where the reference sphere center must 
be determined with the best possible accuracy. It 
can also be used for identif ication of spherical sur- 
face parts for which the radius is " f i xed"  by the 
specifications. 

The choice of the best algori thm for a given 
spherical cap (defined by o~) can be defined by a 
critical value ac: 

• for ~ < ~c, the three parameters algor i thm mini- 
mizes Ecmax. 

• for (x > O~c, the four parameters algori thm mini- 
mizes Ecmax. 

In this experimental study, the critical value of (x is 
~c = 70°- 

Conclusions 
The proposed simulat ion method is general and 
may be applied to all surfaces defined by points 
and normals. Regardless of the shape and size of 
the surface, the simulat ion provides an estimate of 

i 
[3 5 pts 3 p a r a m e t e r s  I 

4 • 9 pts 3 p a r a m e t e r s  ........ ] ................................... 
/ 

"~ "1- 13 pts 3 p a r a m e t e r s  I 

3 . . . . . . . . . . .  .............................................. T .......................... i ....................... ' i 

o ................... i ................ ~ ................ ................ i ................ 1 ................................................. 1 ................ ; .................. 
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Figure 11 Simulation of the error Ecmax as a func- 
tion of the number  of sampled points 
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surface identif ication accuracy, which depends on 
the distr ibut ion of points. 

The method is applied to the sphere in order 
to evaluate the error of location of a sphere center. 
This leads to a probe calibration strategy, which is of 
major interest for CMM metrologists. The numerical 
s imulat ions show that, due to measurement errors, 
the sphere center is less well  determined when the 
points are measured on a small spherical cap. This 
result is nearly insensit ive to the number of points 
(five, nine, and 13 points). 

The previous results for small measurement 
areas is improved by the use of the three parame- 
ters model in which the radius of the identif ied 
sphere is assumed to be known. The most appro- 
priate model (three or four parameters) for probe 
calibration on a given spherical cap is given by 

• for cx < 70 °, the three parameters algori thm 
• for ~ -> 70 ° , the four parameters algori thm 

In both cases, it is advisable to measure the spheri- 
cal cap by five points. 
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Appendix A: description of the linear system 
The linear system is defined by: A • U = B, with 

A =(ai i) 
a l l  a12 a13 814 

a12 a22 a23 a24 

813 a23 a33 834 

a14 a24 a34 a44 
where 

U 

v 

w 

8r 

a ,  = ~'. cos/3~ cos e~ a23 -- 

a12 = ~'. cos/~/2 sin e/cos 8i a24 = 

a13 = ~', cos/~i sin/3~ cos ei a33 = 

a14 ---- ~ COS/3 icOs •i a34 --= 

a22 = ~ COS/~2 sin 8,2 a~ = 

cos/3; cos ei 
~ : *  cos/~i sin 8i 
~ : *  sin/3 i 

~.. cos/~i sin/~i sin 8; 

~, cos/3; sin e; 

sin/3~ 
~'. sin/3,. 
n 

Appendix B: condition number 
The condit ion number of matr ix A is defined by 

K(A) = cond(A) = IIAIIIIA-111, 

where A -1 denotes the inverse of matr ix A, and I1"11 
a matricial norm. This number evaluates the sensi- 
t iv i ty of the solut ion U of the linear system A • U = 
B with respect to the variat ion in the data. 

Consider the perturbed system A • (U + 8U) = 
B + 8B. It can be shown that 

llsull IIAIIIIA-111118811 
IIUII -< 11811 

This inequal i ty shows that for a given relative data 
error, the relative solut ion error increases according 
to the condit ion number. 

A linear system for which x(A) >> 1 is called ill 
condit ioned, and a linear system for which K(A) ----- 
1 is called well  condit ioned. 

The mathematical norm used is the L 2 norm, 
which can be defined by 1~112 = (P( AA*))I/2 where 
A*  denotes the adjoint matr ix of A and p(AA*) = 
max ~i(AA*) where the terms Xi(AA*) are the eigen- 

i 
values of the matr ix AA*. 
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