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SUMMARY

The geometric identification of a N-point measured surface may be obtained by means of 4

different optimalization criferia

least-sguares on

the error form, minimum form error, greatest

interior tangential surface, smallest exterior tangentisl surface.

In this paper a ceneral and uniaue identification model based on the small-displacement screw
is shown to be usefull for any surface and any criterion.

On the basis of experimental results,

dealina with planes, circies and cyiinders, we have

estaplished a comparaison between the different optimalizing criteris,

T -A GEOMETRICAL AND GENERAL IDENTIFICATION METHOD
USABLE WITH ANY SURFACE AND ANY CRITERION

Measuring a mechanical part consists of,
determining the position of @ model-surface,
and, secend, to determining the parameter values of
this model surface. Both steps are based on
experimental messurements of some points.

Solvino this kind of problem is widely called
"solving an inverse problem" (TAR. 87). Because of
its simplicity, fte least-sauares criterion (Lz—nurm
criterion) is widely used for the resolution of inverse
problems.

The least-squares critericn is intimately
related to the hypothesis of Gaussian uncertainties.
For other types of uncertainties, better criteria
exist. Amgng them those based on an l{-naorm (least
absolute wvalues) or les-norm (minimax) have the
advantage of allowing an easy geometrical formulaticn.

first,

I.1 - Principle :

We will wuse here the small displacement
screw method already defined (BOU.76) by using L2
-norm criteria, extending it to three new criteria

of ogeometrical optimization (least form error
Leo-norm criterion or minimax ; greatest interior
tangential surface and smallest exterior tangential
surface : Lqunorm criterion),

The manufacturing surface is supposed to
be known under the most general way that is to say
by a set of theoretical points Mith' with their normals
- . —
7y, related with the measured error ?f Mitly - g
between the measured point and the theoretically
defined point.(see Figure 1) '

1.2 - Setting up_the eoguation bv using small displa-
cements screw_model.

1.2.17 We have demonstrated in the past that the most
gencral displacement may be linearized by using the
screw model so that the translation displacement vector
at point A may be related to the translation
displacement vector at point B. (belonging ta the
same solid), through a vectarial relationship :

— e — S e
Dy = by + BBAR (1
A B
—
The new vector R is the rotational vector.

It can be used instead of the rotational matrix when
. — R -4 =
approximatelyl R 1¢5¢. The .double vector fleld{R;DH}
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EDL Measured point Mi

theoritical surface after
optimization

theoritical surface before
optimization

Fiogure 1

is & screw. We have designated 1t :

small
displacements screw. :

1.2.2 Setting up the equation. We will take as unknown
the 6 scalar wunknown components of the small
displacement screw which, applied to the model-surface,
will optimize the residual errors between measured
peints  and  thesretically-defined points, according
to a Lg-norm criterion. We can write for each measured

point :
ei = F1 [ Ouns F:] @

f& represents the error before optimization
ey represents the error after optimization.

By using the relation (1) we can obtain:
i —— ————— =i
Then the relation (2} becomes :
— — — —t— ——
ey =1 - (Op .y + (A My ang) - R

We can obtaln a similar relationship for
the p measured point, that is, p linear equations
with & unknowns (X Ny ¥, U, v, W) the é unknown
components of the small displacement screw. In the
case of mechanical metrology, the nomber p of measured

peints is always greater than the number r of
Independent unknowns.
We must therefore determine the optimal

value of the small displacement screw according to
the criteria which will minimize the distance 7 between
model and manufactured surface.
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If we use the L,-norm criteria (least absolute
values): ™

12 Jy

1 L="|l il

If we use the LE-HDI’I'H criteria (Jeast-sauares)
g™ Yk
2o o)
=1

If we use the les-norm criterion : (minimax):.

T MAX ey

In each case we must find the small
displacement screw so that Zk must be minimum. It
must be emphasized that the Lk—criterion is justified
only if the assumption of errors distribued in
accordance with a generalized Gaussian probability
density fk (X) of order K is acceptable.

K- 1 f](xpz"—q-exp[—%}
* e 2
A A (X‘XO)J
K=2 f00 -2— . exp |-a
PR Pl (R

K=00 §(X)-f1
Z0oo

0 otherwise

for X, -Toag X< X, +Too

Strictly speaking, we car use K = 2 {least-
squares criterion) only if the errors are distribued
follewing a frue Gaussian probability density. In
‘mechanical metroleogy this case never happens ;
nevertheless, everyone uses it. Conversely, the case
K =oo(minimax criterion) which always happens on a
measuring machine with limited errors is never used.
But rather tham to try identifying the probability
density errors funmction on the manufactured surfaces,
we prefer to ogive the geometrical meaning of each
criterion.

1.3 -First criterion of optimization
on_form error :

There is nothing new to say about the L2

- norm criterion except that it is very sensitive

to some aberrations in the data. In our case we have

to find the small displacement screw TA in order that:

2 T 2
I, - Z (e.) be minimum.
L=1

The result can be readily compute by solving
a linear system, whatever the surface to be identifieg
{cylinder, cdne, complex surface, ...J.

least squares

1.4 - Second criterion of optimization : minimuem
error form (According to I1.5.0.).:

We will soive the Les-norm minimization by

using linear programming. We have to find the small

displacement screw TA in order that :{see Figure 2)

I MAX lSup(ei) - INF(ei)l be minimum.
L

That is to say, using the linear constraints,

BS - g0 te{t - #}
BI - e;40 1e{1 -}
the function, Z,-AS -Al  will be minimum.

AS representes the upper band of ei's
DI representes the lower band of ei's

oo representes the error form ISG's definition.
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6" theoritical surface after
L —
wE o pptimization
‘}a/ Do
) ““Theoritical surface
\0“@1 Al M}’B_{._ \Jefore optimization
-~ Figure 2
1.5 - Third and fourth eriteria_of optimization
smallest exterior tangential surface and greatest

interior tangential suorface :

In the case in which we seek the ogreatest
interior tangential surface, we must chosse as a model
of the inifial surface an interior surfsce such that
the ei's be positive (thus eliminating the sion
problem}. We must then find the small-displacement
Screv Tp‘ in such a manner that under the linsar
constraints

OS - ey 20

the function Z, =AS will be minimum.
Similarly, when we seek the smaliest exterior
tangential surface, we must choose as a model of tfhe
initial surface an exterior surface such that the
ei's e positive. We  must then find the
small-displacement screw T.l\ in such a way that under
the linear contrainis.

Al - Ch £0 .

the function Z4 = - AT will be minimum,
IT - COMPARING RESULTS OBTAINED FROM EXPERIMENTATION
ON CIRCLES, PLAMNES AND CYLINDERS :

These experimental results were obtalned
using a measuring machine (S.E.I.V.-RENAULT - PROMESUR
SOFTWARE) whose absolute precision within the entire
volume dis + 3,5 um including probe errors.(KUN.83}
We measured 3 kinds of surface using the 4 criteria
previously defined. We compared the results from
3 differents points of view :(MIR.8%)

- Form error,

- Model-surface final position and its

related geometrical parameters

- Calculation time.

II.1 ~ Circles

- P
ELEOL g 2-’}1...____25// 28.9
257 Ve
27 |24
Vily 20.5
minimax
L N 4 2 I— least. squares
I 8.9 | I '
g TABLE Al: Partial measures

circle case

j ‘Nunnec‘ points
8 13 23 33 43 53
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FULL MEASURED CIRCLF™ CASE

form
errar | A
0T ¢ 203(53 points}
0t 186(13 points)
207 32027 points)
07 ¢ 122(8 points)
i | g -
least mini greatest smallest criterion
sgquare max  Int.cir. ext.cif. TARIF A7

Diameter circle mm
32163 | 3210 gext. 072 Tl 156 g8

32.140 smallest ext.cirele 186.852
32.113 greatest int.circle 185.955
22109 Le—""732.112 @ int. 185 ago |1 185.951
122,357 p—————d172.35¢ @ exL. 203.490 203.490
122.353 smallest ext.circle —$ 203.485
122.336 greatest int.circle 203,455

203,436

122.3% b""1122.33¢ pint. 23.434

least mini least mini

squate  max JABLE A3 cqjare mex
Pts Nbr| Least-sguares| Minimax Gain Gain %
4 0.3457 0.3354 0.0103 33
16 0.0380 0.0325% 0.0055 16 %
a8 0.0126 0.0108 0.0118 16 %
27 0.0167 0.0740 §.0027 19 %
13 0.5360 0.4687 0.0673 14 %
53 0.0284 0.0279 0.0005 1.8 %
Circle: Forme errog TABLE A4
In all cases, we find that the minimax
criterion is an improvement over the least-sguares
criterion with regard to form errors. This

improvement, which is about 15 % in most cases, (table
f2-A4) becomes as great as %8 % when the circle is
probed only on a part of its circumference less than
TTD/4. (table A1). We also see that the exterlor circle
and interior circle diameters obtained from the minimax
are always closer to the greafest circle and smallest
circle respectively than those gbtained from
least-squares (table A3). Finally we see that in any
case in which the prob_ing zone 1is agreater fthan
TID/4, the minimax criterion and the least-square
criterion give a similar spread on diamefer and cenfer
position. With few probing points, the spread is
smaller with minimax than with the least-sguare. With
& probing zane smaller than TV D/&, the results are
erratic in any case.

(NAW.81)
This

N.B. Particular case Prohing circle in
4 opposed points on 2 perpendicular diameters.
case is widely used in everyday practice.

The ellipse passing through these 4 points has
the same center as the minimax circie.

The least-sgquares circle has the same center as
the circle obtained by intersection of the 2 mediators
of the 7 orthogonal chords.

The greatest interior circle and the smallest
exterior circle pass through 3 measured peints and
their centers are far away from both least-sauares
and minimax criteria.(according to the well-known
properties of L1—n0rm criterion).

Influence of the number of measured poipnts an
calculation time.
The results, shown below, present no

surprises (TABLE B). Each calculation time has been
measured on a smali HP 9826 non-compalible computer.

% calculation /
60
1 tire sec. '/} mars
50-1 S smallest ext-
] s 7 erieur circle
40 i /’/ 2 greatest _int-
| s erieur circle
/ /s
30 VAl 3 minimax
1 7 4 least-sauares
an Ve o
10 P A
i ,__,.-vv*ﬁ;glfsqrh_pﬂd 4 ;
0 e e A%MEnmgﬁ

4 8 13 16 27 53
I1.2 - Cylinder :

We can make the same observations as in the
case of the circle (TBBLE {). For example, In form
errors the minimax criterion gave results 10 % better
than those obtained by the least- sguares criterion
while the calculation time was multiplied by 15.
But this time is within industrial limits when the
number of measured points is few. The greatest interior
cylinder and the smallest exterior cylinder (Ll -
norm criterion) can be computed only when the measured
points are situated on more than the half-cylinder.
As with the circle, the minimum diameter and the
maximym diameter obfained by minimax criterion are
closer than the agreatest cylinder and smallest cylinder
obtained by the least-sguares criterion.

FUEL MEASURED CYLINDER CASE
diameter cylinder m
@ ext. 199,720 F——$ 199 ¢97
smallest ext.circle 192,686 S 19 0]
grestest int.circle 199.260 points
b IN.195.205 ] 0021 )
, 118.8¢8
smallest ext.circle r/”//’,g/ 118.710
L .
@ ext.117.017 1 72 polnts
greatest int.circle 118.028
r_____.—ﬂ=1?7.980
@ int.117.910
@ ext. 93.952 ¢— 93.952
smellest ext.circle 93.932
s R © 31 points
greatest int.circle — 93.856
@ int. 93.858 ] 036 J
least minimax
square TABLE C
11.3 - Plane :
Pts Nbr | Least-squares Minimax Gain %
6 0.00%9é {(.0083 15 %
g 0.011¢é 0.0106 0 %
30 0.0218 0.0201 7%
53 0.1727 0. 1647 5%
Plane: Forme error TABLE_D1
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We see that form error increased with the
number of measured points. Conventionaily a number
of points between 4 and 12 is most often used.
Improvement in form error is then visible when the
minimax criterion is used. By contrast, when the number
of points Is very large, using the minimax criterian
ylelds no true improvement in form error. Because
of the time consumed the least-squares criterion is
then better.

III COMPARING THE EFFECTS OF AN ERRATIC POINT :

III.1 CIRCLE :

_ We have inserted In the dats list of measured
points on & circle with 16)*m form error, an aberration

point in such a manner that the §}= gﬁxm of a measured

point becomes ¥'; - 210um. (TABLE E)

Least-squares Minimax

No aber- [ With aber-[ No aber-J with aber-

rant pt rant pt rant pt | rant pt
Form error 0.015 0.225 0.014 0.218
Center X | 160.230 160.222 160,232 160.184
Circle Y 1 142.805 142,290 142.804 162,706
Khrircle 32.126 31.948 32.124 32.122

Circle: aberant point TABLE E

The difference between the results

obtained by minimax and these obitained by least-squares

is exactly the same, with or without aberratien point.
S0, greater the form error value, the greater the

probability of aberration point. The center circle
position is more perturbed with the minimax than with
the least-sguares criterion, but both are perturbed
{respectively 10%um and 17um). The least-squares mean
circle diameter is strongly perturbed {(+180 s m) but
the minimax mean circle diameter is almost unchanged
(+ 4 pum)., It is evident from these results that it
is easy to determine an aberration point with the
least-squares criterion An error e; oreater than
m + 30 must be like an aberration point with
probability of 93,72 %. Conversely it is almost
impossible to determine an aberration point with the
minimax criferiaon.

IIT.2 PLANE :

As in the case of the circle, we have
inserted in the data list for a plane with 20 um of
form error, an aberration point in such a manner,

that its .EE has incrased by 173/u m. {TABLE F)
Least-squares Minimax
No aber- With aber-| No aber- bith aber-
rant Pt rant Pt rant Pt Jrant Pt
Form error| 0.0216 0.1830 0.02017 0.1449
Plane
a 0.062757 0.003085 0.002798 0.004033
n” { b 0.000203 | -0.0000s2 0.000z74 | -0.000528
Plane: aberrant point TABLE F
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As In the previous case, the value of the
form error indicates the possibility of the aberration
point, and conly the least-squares criterisn makes
it possible to perform the statistical analysis for
eliminating it.

IV - GENERAL RESULTS ANALYSIS :

- The mirimax criterion improved the form error
obtained with the least-sguares criterion by about
i5 %. This Imprcovement becomes almost null when
the number of points is greater than 20.

- In any case the L1—n0rm criterion <{smallest or
greatest tangential surface) is closer to the minimax
criterisn than ta the least-sguares criterion.

- The distributing measurements points over the whole
surface gives the greatest effect.

- In the case of circle and cylinder probing on a
part of its circumferencs lesser than TTD/4, neither
the minimax norm the least-sguares criterion gives
a good result.

- With & very great number of measured points, only

_the least-sguares, criterion makes it possibie
to detect the aberration points, ‘But In any case
the value of the form error indicates the sberration
point.

We can thus state that with a very ogreat
number of measured points, the least-squares criterion
provides :

~ Time-saving.
- Statistical analysis of the
the aberraticn points.

- Form error almost equal to the minimax value.
By contrast, when the number of measured

points is fewer than 12 (as in everyday practice),
the minimax criterion must always be chosen because
it gives & result conforms with ISO-norm in a
reasonable calculation time. Unlike the criterion
of least-squares, the criferia of greatest internal
surface, least external surface &and minimax conform
to the specifications of the ISO-norm.

precision and
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