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Abstract 

Aspheric surfaces have become widely used in various fields ranging from imaging systems to energy and biomedical applications. Although 
many research works have been conducted to address their manufacturing and measurement, there are still challenges in form characterization 
of aspheric surfaces considering a large number of data points. This paper presents a comparative study of 3D measurement and form 
characterization of an aspheric lens using tactile and optical single scanning probing systems. The design of the LNE high precision 
profilometer, traceable to standard references is presented. The measured surfaces are obtained from the aforementioned system. They are 
characterized with large number of data points for which a suitable process chain is deployed. The form characterization of the aspheric 
surfaces is based on surface fitting techniques by comparing the measured surface with the design surface. A comparative study of registration 
methods and non-linear Orthogonal Least-Squares fitting Methods is presented. Experimental results are analyzed and discussed to illustrate the 
effectiveness of the proposed approaches. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of 13th CIRP conference on Computer Aided Tolerancing. 
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1. Introduction 

Aspheric surfaces have become widely used in various 
applications such as optics, photonics and biomedicine. The 
manufacturing and measurement of such elements is still a 
common challenge in industry as the  form characterization of 
aspheric surfaces is not yet normalized. This process becomes 
even harder when considering a large number of measurement 
points. 

This paper presents a comparison of two measurement 
techniques and of three different fitting algorithms for the 
form characterization of aspheric surfaces. Optical and tactile 
single scanning probe systems are commonly used in 
dimensional metrology applications. However, in order to 
reach a nanometric level of accuracy in the measurement of 
aspheric lenses, ultra-high precision machines should be 
employed. Therefore, the design of the LNE's high precision 
profilometer, traceable to the SI meter definition is presented. 
Its architecture complies with the Abbe principle and its 
metrology loop is optimized. The performance and capability 

of the machine in the scope of aspheric lenses metrology are 
discussed. 

The measured surfaces (MS) are obtained from the 
aforementioned system. They are characterized by a large 
number of data points (>100,000 points) which will be 
processed following a suitable procedure. The Design Surface 
(DS) of the aspheric lens can be described using different 
models. A conic-polynomial model which serves as a basis 
for aspheric lens specification, a discretized form of the 
polynomial into a set of reference points to create a nominal 
CAD form, and a mapping of that polynomial into a linear 
combination of orthogonal basis functions.  

The form characterization of aspheric lenses is based on 
Orthogonal Least-Squares fitting techniques by comparing the 
measured surface with the design surface. A comparative 
study of an Iterative Closest Point (ICP) method and non-
linear Orthogonal Least-Squares Optimization Methods is 
presented here. Three fitting algorithms are compared based 
on their capacities to converge quickly with an acceptable 
accuracy, to manage a large volume of data and to be robust 
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and numerically stable. Experimental results are presented 
and discussed to illustrate the effectiveness of the proposed 
approaches. 

2. LNE high precision profilometer 

Measuring aspheric surfaces to an accuracy of few tens of 
nanometers remains an important challenge in manufacturing 
and metrology of freeform optics [1]. To achieve the best 
possible accuracies, specific ultra-high precision machines 
have been developed by the National Metrology Institutes 
(NMIs) that ensure the traceability chain. In this regard, a 
three-year project has been launched by the European 
Metrology Research Program (EMRP) [2] and encompasses a 
multitude of European National Metrology Institutes (LNE, 
PTB, VSL, METAS, SMD and CMI), industry and academia 
aiming at improving apparatus and methods for high-precision 
measurement of aspheric and freeform optics and 
characterizing their form. The apparatus are generally related 
to small-volume coordinate measuring machines that feature 
measuring ranges of hundreds of millimeters. These machines 
respect the Abbe principle, apply the dissociated metrological 
structure and incorporate high-precision mechanical guiding 
elements. 

2.1. Description of the LNE high precision profilometer 

LNE's high precision profilometer is a measurement 
machine (Fig. 1) capable of performing independent motions in 
all x, y and z directions using three independent high-
precision mechanical guiding systems equipped with encoders. 
While x and y motions are controlled by sub-nanometer 
resolution laser interferometers, the z motion is controlled by 
a differential laser interferometer that allows to shorten the 
metrology loop and maintain a sub nanometric accuracy. Its 
working range in the xy-plane is 50×50 mm². The probe and 
its supporting structure are mounted on the vertical guiding 
system in the z-direction along which the measurement is 
done. The working range of the mechanical guiding system in 
z-direction is about 100 mm. The supporting frame is made of 
massive granite and carries the guiding elements. The 
metrology frame is made of Invar for minimal sensitivity to 
environmental influence.  

The metrology loop incorporates three Renishaw® laser 
interferometers and is equipped either with a chromatic 
confocal probe or a tactile probe to achieve nanometric 
resolution measurement. The machine allows the in-situ 
calibration of the probes by means of the differential laser 
interferometer considered as a reference. 

The uncertainty budget is established for the measurement 
of  KNT4080-30 V-groove standards taking into consideration 
different and various error sources with the addition of the 
measuring probe's errors. The obtained results validate the 
capability of the profilometer to perform measurement on 
aspheric surfaces at the nanometer level of accuracy. The 
tactile and confocal measurements of the asphere take place in 
the LNE's cleanroom in which environmental conditions are 
optimal (temperature and humidity are controlled). 

Then, the asphere is posed on the Zerodur table (Fig. 1) and 
is first measured by a tactile single point scanning probe 
which has been previously calibrated in-situ. 

 

 

Fig. 1 Architecture of the LNE' high precision profilometer. 

2.2. Evaluation of the LNE high precision profilometer 

On this machine, it is not possible to exactly align the 
asphere's axis with the z axis of the measurement, however, 
an approximation of the apex position can be done by 
estimating the cusp of the surface. A large number of data 
points (>> 100,000 points) are recorded in the form of XY-
grids (ranging from 5×5 mm² for confocal to 6×6 mm² for 
tactile). The optical probe's total measurement time is about 
half of the tactile probe's total measurement time since no 
contact needs to be established for the optical measurement. 

3. Form characterization of aspheric surfaces 

3.1. Mathematical representation of aspheric surfaces 

The traditional way to represent aspheric surfaces is the 
axially symmetric quadric and power series parametric 
description as described in ISO 10110-Part 12 (Eq. 1) 
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where r is the radial coordinate, z is the sag (sagittal 

representation), c is the curvature at the apex, and N is the 
conic constant. The D2jr2j terms are the higher order aspheric 
terms that represent the additive departure from the quadric.  

Other mathematical formulations have been developed [3]. 
Among them orthogonal basis polynomials such as Q-
polynomials and Zernike polynomials in an attempt to 
improve the classic power series and representing the useful 
surface shape with a small number of parameters. This makes 
each term unique and meaningful. 
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3.2. Aspheric surface fitting 

The form evaluation of aspheres can be done by 
performing the fitting or association of the aspheric model to 
the measured data according to a criterion such as least-
squares or minimum zone. The residuals of the fitting or the 
deviations to the associated reference model are then 
evaluated. The Peak-to-Valley (PV) and the Root Mean 
Square (RMS) are the most widely adopted parameters for the 
assessment of form deviations of aspheric surfaces. 

Many fitting techniques are reported in the literature, but 
only few discuss the fitting of aspheres. Chen et al [4] 
propose an aspheric lens characterization by means of a 2D 
profile fitting. The dataset used is a profile measured using a 
stylus and the reference model is the corresponding asphere 
profile. The fitting is done using the Levenberg-Marquardt 
algorithm [5] for its quick convergence and precision. Similar 
works have been published and also deal with aspheric profile 
identification [6] and conic sections fitting [7]. Sun et al [8] 
perform fitting of aspheric curves and surfaces on simulated 
data with vertical distance minimization using a Gauss-
Newton algorithm. In fact, they assume that the model and the 
data are both defined in the same reference frame. Other 
works involve approximating aspheres with NURBS models 
in order to generate CAD models for manufacturing purposes 
[9]. The problem of fitting the data to the aspheric surface 
model is posed as a nonlinear least-squares problem which is 
defined as follows (Eq. 2). 
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where O is the set of shape, position and orientation 

variables, R, T are transformation parameters, pi is a data 
point, and qi is the orthogonal projection of the data point pi 
onto the reference model (footpoint). In this paper, position 
and orientation parameters as well as shape parameters are 
estimated. The process described here goes by optimizing for 
five transformation parameters, the symmetry about z axis is 
being redundant here. Two general approaches to solving this 
problem can be considered. In the sequential approach, 
algorithms are implemented in sequential computation of 
footpoints and transformation parameters. Unlike sequential 
approaches, the simultaneous approach can perform 
optimization of transformation parameters and footpoints 
simultaneously. 

There exists vast literature about non-linear least squares 
fitting algorithms. Gauss-Newton type [10] and Levenberg-
Marquardt (LM) type [11] have been recommended by NMIs. 
In this paper, we restrain the comparison to the sequential 
fitting implementation. 

3.3. Orthogonal non-linear least squares fitting algorithms 

The Newton-Raphson method [12] is used in this paper for 
the computation of orthogonal footpoints. The goodness of the 
approximation depends on the stop criterion and on the 
quality of the initial guess (relative position of the point data 
and the model should be close to the optimal solution) [12]. 

The vertical projection point is taken as an initial guess and 
the Newton-Raphson method iterates until the orthogonal 
projection point is accurately approximated. 

Then for the objective function optimization, Levenberg-
Marquardt (LM) can be used [5, 13]. LM is a well-known 
optimization algorithm that has been approved by the 
National Institute of Standards and Technology (NIST) for 
metrology applications that require fitting simple curves and 
surfaces in 3D [11]. Generally, this algorithm converges 
reasonably quickly and accurately for a wide range of initial 
guesses that are relatively close to the optimal solution [4]. 
However, the fitting of parametric curves and surfaces using 
the LM algorithm requires the calculation of a large Jacobian 
matrix and the storage of a considerable system of linear 
equations, as described by Speer et al [14]. 

For a very large number of variables or unconstrained non-
linear problems, iterative quasi-Newton methods such as the 
Limited memory- Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) method can be more convenient [15,16]. Like any 
minimization algorithm, L-BFGS preferably requires a twice 
differentiable objective function whose gradient must be zero 
at optimality. The advantage of this method is that it does not 
need calculating the inverse Hessian matrix of the objective 
function. It only approximates it using a limited amount of 
storage [15]: at every iteration, the inverse Hessian is 
approximated using information from the last m iterations 
with each time, the new approximation replacing the oldest 
one in the queue. L-BFGS is suitable for applications 
involving large volumes of data and variables [17]. 

3.4. Computational Geometry approaches 

Computational geometry deals with the structure and 
complexity of discrete geometric objects as well as with the 
design of efficient computer algorithms for their manipulation. 
Registration and reconstruction are among the two most 
important research themes in computational geometry and can 
provide new research avenues to freeform surface fitting and 
Geometrical Product Specifications. 

There exists various mesh reconstruction algorithms such 
as the Cocone algorithm which has been shown to fit the most 
our applications provided that a condition on the density of 
sampling is satisfied [18]. Another approach exploits the fact 
that aspherical surface datasets can generally be projected 
onto a plane following a bijective mapping without any 
superposition of points. The points are reconstructed in the 
plane using a 2D Delaunay triangulation which guarantees a 
correct mesh. Bijection offers the possibility of tracing back 
the points to their original positions without modifying the 
geometry and the topology of the underlying surface. 

Meshes can serve as reference models when the problem 
needs to be expressed in discrete form. In this case, an 
Iterative Closest Point (ICP) optimization can be performed 
[19, 20]. Generally, ICP is used in registration operations but 
adaptations exist for its usage with mesh model cases. A mesh 
model offers the advantage of obtaining a more accurate 
distance calculation than a point model does. In general, dpm 
(point-to-mesh distance) is smaller than dpp (point-to-point 
distance). 
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4. Results and analysis 

The comparison of the fitting algorithms is founded on two 
elements. Firstly, the effect of fitting data with orthogonal 
distance minimization is studied. Secondly, the effect of data 
size on the algorithms’ complexity is analyzed and is based on 
two criteria, the units of memory used and the computational 
time expressed as Central Processing Unit time (CPU time). 
In order to vary the number of points in a dataset, no specific 
filtration technique is applied, but simply, points are sampled 
at different chosen rates. 

The machine used for the tests is an Intel core i7/x64 
platform with 8 Gb of RAM and a 2.0 GHz processor. 

4.1. Simulated datasets 

The aspherical model is simulated based on Eq. 1 by 
generating symmetrically distributed points around the 
asphere's axis (Fig. 2). Its design parameters have the 
following values (c=10-20, κ=-1, α2=0.02227, α4=7.29×10-6, 
α6=4.52×10-9, α8=-1.061×10-11, α10=9.887×10-15). 

 

Fig. 2 Simulated asphere model without noise. 

Then, simulations are performed in order to study the 
effect of data subject to errors both from measured object 
(form deviations) and measurement (Gaussian noise) [21]. 
Measurement errors simulation involves generating Gaussian 
noise with controlled mean and standard deviation. This value 
is coherent with noise that can manifest on the measurement 
sensors. A MATLAB random function is used to generate this 
noise which is added to the theoretical data in the orthogonal 
direction at each data point. Fractional Brownian Motion is 
also superimposed on the theoretical data in order to simulate 
form deviations [22]. The H parameter (Hurst index) is taken 
to be 0.9 and the span equal to the number of points in the 
simulated dataset [23]. 

The three fitting methods (LM, L-BFGS and ICP) are used 
to fit and analyze the data and the results are compared. The 
output transformation parameters of each algorithm as well as 
the model parameters that are computed after each fit are also 
compared. The RMS and PV values are also reported (Table 
1). The RMS and PV of the simulated dataset are calculated 
upon generation and theoretically amount to 54.95 and 
265.292 nm, respectively. From the results recorded in Table 

1, all three algorithms are equivalent with respect to fitting. 
The transformation parameters are almost identical across L-
BFGS, LM and ICP. Since ICP is only an algorithm for fitting 
two datasets geometrically, the model parameters cannot be 
estimated and the comparison in this matter restrains to L-
BFGS and LM. The values of RMS and PV output by all three 
algorithms are very similar and are close to those of the 
simulated set. 

Table1. Fitting using Least-Squares orthogonal distance minimization for the 
combined systematic and random errors (N: Number of points; tp: 
transformation parameters; mp: model parameters). 

N = 500,000 L-BFGS LM ICP 

tp: 

Rx (°) -0.0086725 -0.0086463 -0.0086215 

Ry (°) 1.853623E-4 2.124006E-4 1.96234E-4 

tx (mm) 7.276719E-5 8.412097E-5 -1.5734E-5 

ty (mm) 0.0033001 0.0033197 0.0033952 

tz (mm) -8.6709E-5 -1.7561E-4 -1.77180E-4 

mp: 

c 1.56046E-19 1.0E-20 × 

κ -1.0 -1.0 × 

α2 0.02271712 0.0222847 × 

α4 7.293143E-6 6.532301E-6 × 

α6 4.520966E-9 2.68453E-8 × 

α8 -1.05786E-11 -3.06699E-10 × 

α10 1.77676E-12 1.44107E-12 × 

RMS (nm) 51.68628 51.68615 51.6841 

PV (nm) 236.2884 236.2927 236.3124 

 
The fitted residual errors are slightly smaller than the 

theoretical values because there is a better position for the 
aspherical surface with respect to the generated Brownian 
motion errors. Overall, this part validates the algorithms used 
for the purpose of fitting aspherical data. Their accuracy is 
acceptable and is equivalent across all of L-BFGS, LM and 
ICP. For a theoretical dataset simulated without any added 
noise, fitting returns parameters that are identical to the design 
parameters; whereas in the case of added noise, these 
parameters present a slight variation (especially α10). 

4.2. Experimental data 

The surface is first scanned using a tactile probe over an 
area of 6×6 mm², giving a grid of about 1,500,000 points. The 
results of the L-BFGS, LM and ICP fitting are detailed and 
compared for the experimental datasets for three different 
relative initial positions with respect to the reference model 
(Table 2). The first initial position (IP1) is manually 
positioned to be very close to the model, IP2 is shifted by few 
millimeters (+10 mm) in x and y directions, and IP3 is the 
same as IP1 but rotated with an angle of almost 90° about x. 
Both L-BFGS and LM converge for all three cases, but ICP 
fails in the case of IP3. The residual errors are identical at the 
nanometre level for all three algorithms and return a RMS 
value of  217 nm and PV of  2198 nm. 
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Table2. Fitting results of the tactile measurement for L-BFGS, LM and ICP 
algorithms. 

N 
L-BFGS (nm) LM (nm) ICP (nm) 

RMS PV RMS PV RMS PV 

IP1 

75,000 217.18 2198.88 217.18 2198.39 217.22 2188.90 

500,000 217.18 2198.84 217.18 2198.84 217.21 2189.59 

1,500,000 217.18 2198.93 217.18 2198.93 217.21 2189.84 

IP2 
75,000 217.19 2198.42 217.19 2198.42 217.22 2188.89 

500,000 217.19 2198.87 217.19 2198.87 217.21 2189.92 

1,500,000 217.19 2198.96 217.19 2198.96 217.21 2190.13 

IP3 
75,000 217.18 2197.19 217.18 2197.19 × × 

500,000 217.18 2197.65 217.18 2197.65 × × 

1,500,000 217.18 2197.74 217.18 2197.73 × × 

 
In the same reference frame, the surface is then scanned 

using a chromatic confocal probe, giving a grid of about 5×5 
mm² containing 1,000,000 points. For the same initial 
positions, IP1, IP2 and IP3 of the dataset with respect to the 
model, and different dataset sizes, the fitting results are 
reported in Table 3. 

Table3. Fitting results of the optical measurement for L-BFGS, LM and ICP 
algorithms; (N: Number of points). 

N 
L-BFGS (nm) LM (nm) ICP (nm) 

RMS PV RMS PV RMS PV 

IP1 

50,000 336.40 6160.80 336.40 6160.73 336.41 6161.12 

500,000 336.39 6156.95 336.40 6156.86 336.41 6157.61 

1,000,000 336.39 6157.18 336.39 6157.16 336.41 6157.93 

IP2 
50,000 336.40 6160.95 336.40 6161.03 336.41 6162.06 

500,000 336.40 6157.06 336.40 6156.99 336.41 6158.12 

1,000,000 336.39 6157.31 336.39 6157.26 336.41 6158.24 

IP3 
50,000 336.40 6160.84 336.40 6160.94 × × 

500,000 336.40 6157.02 336.40 6157.13 × × 

1,000,000 336.40 6157.23 336.40 6157.38 × × 

 
The model parameters computed with the fitting of both 

the optical dataset or the tactile dataset are listed in Table 4. 
The experimental data show an equivalent accuracy among 
the two orthogonal distance-based fitting algorithms used 
which are also comparable to ICP in cases where the initial 
position of the elements to fit is relatively close (IP1 and IP2). 
Residual errors are illustrated in Fig. 3 for both tactile (Fig. 3a) 
and optical measurement fittings (Fig. 3b) using L-BFGS. 

L-BFGS and LM perform faster than ICP in terms of 
computational time such as shown in Fig. 4. Although runtime 
is of the same order between LM and L-BFGS, the latter still 
performs a little faster than LM, and that, by a ratio of around 

50%. For large volume datasets, the difference can be of some 
tens of seconds and therefore be critical for on-line metrology 
applications. Nevertheless, all three algorithms are very low 
on memory storage and datasets of several millions of points 
can be processed using any of these algorithms. 

 

 
(a) 

 

 
(b) 

Fig. 3 Residual errors maps: (a) Tactile measurement fit, (b) Optical 
measurement fit. 

 

Fig. 4 CPU time performance of the L-BFGS, LM and ICP algorithms. 
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Table4. The model parameters of the asphere after fitting both the tactile and 
the confocal datasets. 
 

N = 500,000 Tactile dataset Confocal dataset 

tp: 

Rx (°) 0.0022868 0.0109687 

Ry (°) 0.0057522 11.99958 

tx (mm) 0.1286046 3.6542821 

ty (mm) -0.0510596 0.5042661 

tz (mm) -2.989905E-4 -0.4847707 

mp: 

c 4.969E-5 2.192E-5 

κ -1.0 -1.0 

α2 0.0223669 0.0223392 

α4 -2.864146E-6 -1.261943E-5 

α6 7.474612E-7 1.27085E-6 

α8 -3.375417E-8 -3.160791E-8 

α10 5.373977E-10 2.737668E-10 

4.3. Discussions 

L-BFGS, LM and ICP algorithms are tested on simulated 
datasets and they return similar results for the fitting on a 
given aspheric surface model. Since both algorithms are both 
Newtonian methods, applied on the same input datasets, it is 
logical that they converge to the same minimum. The 
algorithms are also tested on experimental datasets and the 
RMS and PV values are comparable. L-BFGS is slightly faster 
than LM and both perform faster than ICP. Nonetheless, all 
three algorithms are very low on memory storage and can thus 
process very large datasets. Furthermore, they return the same 
residual errors even if a subset of the points is considered. The 
adopted sampling strategy is that a reading is picked from the 
dataset but no filtration is applied. The Least-Squares 
minimization is not sensitive to point-set size when the latter 
has low uncertainty and contains a sufficient number of points. 
Tactile measurement is slower but more accurate than 
chromatic confocal measurement as the RMS and PV of the 
residual errors for tactile measurement are smaller, meaning 
that the tactile measurement is less noisy. 

5. Conclusion and future work 

This paper presents measurement and form 
characterization of aspheric surfaces. The comparison of 
optical and tactile measurements of an asphere using the 
LNE’s high precision profilometer is done based on a surface 
form characterization. The performance and capability of the 
machine in the scope of aspheric lenses metrology are 
discussed. Simulations and experiments have been conducted 
to test and compare the performance of three different 
algorithms for aspheric surface fitting. The results show that 
L-BFGS performs better than LM and ICP in terms of 
computational time and is therefore more suitable for very 
large number of data points. 

Future research efforts will concentrate on improving the 
robustness and accuracy of the L-BFGS algorithm. Reference 
data set generation for the validation of metrological software 
for the characterization of aspheric surfaces will be also 
investigated. 
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