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In this paper, a multiple camera measurement system is presented for the pose

(position and orientation) estimation of a robot end-effector for assembly. First,

a multiple camera geometric model is introduced for the 3D pose estimation
of the end-effector and the identification of the intrinsic and extrinsic param-

eters of cameras. Second, an uncertainty propagation model is derived from

the geometric model that enables the number of cameras to be chosen, the
relative position between cameras and finally uncertainty evaluation for pose

estimation. Experimental results are presented in the last section of this paper.

1. Introduction

Modern industrial trends in aeronautics and space have placed an increasing
demand on the subject of robotics and robot manipulators and hence the
attention of many researchers from different engineering and science areas.
The emphasis on sensor-guided robots, off-line programming, robot calibra-
tion, to name a few, contributed to reach some sort of maturity and impor-
tant research results toward efficiency and ease of use of robots for many
applications (assembly and welding, product inspection and testing,. . . )
through the enhancement of the accuracy, the speed and the flexibility of
robots.

Robot calibration is the process of enhancing the accuracy of a robot
manipulator through modification of the robot control software [1]. Cal-
ibration process encompasses four steps: Kinematic modeling, Pose mea-
surement, Kinematic identification and Kinematic compensation. A wide
account of robot calibration literature is provided in [2], [3] and [4].
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Robot calibration can be done using multiple cameras setup. Position
measurement using cameras first requires careful calibration of the cam-
eras. These calibrated cameras define afterward the robot world coordinate
frame. Optimal camera alignment [5] (number of cameras, relative pose)
and evaluation of the accuracy of the resulting system is an important is-
sue toward pose measurement.

In this paper, a multiple camera measurement system is presented for
the pose estimation of a robot end-effector for assembly applications requir-
ing extremely tight tolerances. First, a multiple camera geometric model is
introduced for the 3D pose estimation of the end-effector and the identi-
fication of the intrinsic and extrinsic parameters of cameras. Second, an
uncertainty propagation model is derived from the geometric model that
enables the number of cameras to be chosen, the relative position between
cameras and finally uncertainty evaluation for pose estimation. Experimen-
tal results and software development are presented in the last section of
this paper.

2. Multiple camera geometric model

2.1. The Pin-hole model

The Pin-hole model [6] assumes a correspondence between real object point
and image point through a straight line that passes through the focal point
of the camera. Its also described as the linear projective transformation
from the projective space <3 into the projective plane <2 represented as
follows:

MCam =

fx 0 u0 0
0 fy v0 0
0 0 1 0




r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 (1)

The camera matrix MCam contains intrinsic parameters (the scale factors
and the image center) and extrinsic parameters (the transformation from
world coordinates to the camera coordinates).

The world coordinates and the image coordinate systems are related by
the following equations under undistorted camera model assumptions:

uC =
m11XC + m12YC + m13ZC + m14

m31XC + m32YC + m33ZC + m34

uC =
m21XC + m22YC + m23ZC + m24

m31XC + m32YC + m33ZC + m34

(2)
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It is now possible to express 3D world coordinates from the camera coordi-
nates (uiC viC)T when considering multiple camera system (1 ≤ i ≤ n) by
solving a standard least square fitting which minimize the location error of
points in the image plane e = A× b - c described as follows:

A =


...

m11,i −m31,iuiC m12,i −m32,iuiC m13,i −m33,iuiC

m21,i −m31,iviC m22,i −m32,iviC m23,i −m33,iviC

...



c =


...

m34,iuiC −m14,i

m34,iviC −m24,i

...

 b =

XC

YC

ZC


(3)

The result can be written:
XC = f1(. . . ,uiC, viC, . . .)
YC = f2(. . . ,uiC, viC, . . .)
ZC = f3(. . . ,uiC, viC, . . .)

(4)

2.2. Pose calculation

Least square fitting is also used to calculate the pose of a marked object.
The position of markers on the object CObj,j (XObj,j YObj,j ZObj,j)T, 1 ≤
j ≤ p (p markers) is known and CMeas,j (XMeas,j YMeas,j ZMeas,j)T, 1 ≤
j ≤ p is measured by the multiple camera system yielding to the following
equation where PObj,Meas is the Pose Matrix:

CMeas,j = PObj,Meas ·CObj,j

or
PObj,Meas = g(CMeas,j ,CObj,j), 1 ≤ j ≤ p

(5)

2.3. Visibility model

To track the robot end-effector, all its positions in the working volume need
to be visible through the placed reference markers on the end-effector.A
Marker Visibility Volume (a set of geometrical properties that allow an
optimal camera position) is defined for each marker position on the robot
end-effector.

Visibility volumes intersection and camera field of view enables then to
extract a set of optimal positions and orientations of cameras (Fig. 1).
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Fig. 1. Visibility model for the optimal relative pose of cameras

3. Uncertainty evaluation

From a metrological view camera-based measurement have a stated mea-
surement uncertainty. In real applications the final measurement uncer-
tainty is affected by many factors such as illumination, edge effects, the
operator, and non-regularities of the object to be measured.

The study carried out here explores uncertainty on the position of the
centers of markers when their position on the camera coordinate system is
measured (Eq. 3 and Eq. 4).

According to [7] and [8] several approaches to propagating uncertainty
could be used. One approach is to use Monte Carlo methods, which is highly
general but computationally expensive. Our approach uses an analytical
method based on covariance propagation method expressed as follows:

Cov(f ( . . . ,uiC, viC, . . . )) = Jf/−→u × Cov(−→u )× JT
f/−→u , 1 ≤ i ≤ n

Cov(−→u ) =


. . . 0

Var(uiC) cov(uiC,viC)
cov(viC,viC) Var(uiC)

0
. . .


Jf/−→u =


∂f1

∂u1C

∂f1
∂v1C

· · · ∂f1
∂unC

∂f1
∂vnC

∂f2
∂u1C

∂f2
∂v1C

· · · ∂f2
∂unC

∂f2
∂vnC

∂f3
∂u1C

∂f3
∂v1C

· · · ∂f3
∂unC

∂f3
∂vnC


(6)

Cov(−→u ) : Covariance matrix of centers of a marker on n image planes
Jf/−→u : Jacobian matrix of f around C (1 ≤ i ≤ n) on each camera

Cov(f(−→u )) =

 Var(XC) cov(XC,YC) cov(XC,ZC)
cov(YC,XC) Var(YC) cov(YC,ZC)
cov(ZC,XC) cov(ZC,YC) Var(ZC)

 (7)
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Once we obtain the covariance matrix for a given marker in the measure-
ment space, we can apply the same method to estimate uncertainties for
p points of an object seen by n cameras to extract uncertainties on the
orientation and the position of the object in the measurement space:

Cov(g(CMeas,j ,CObj,j)) = Jg/~c · Cov(CMeas,j ,CObj,j) · JT
g/~c (8)

4. Experimental results

Experiments based on a two cameras measurement system are shown to
validate the uncertainty propagation application. (Fig. 2) depicts the mea-
surement of the center of a marker on each camera (10 000 measurement).
(Fig. 3) shows the resulting calculation of the corresponding 3D point (world
coordinates system).

Fig. 2. Experimental results on image planes (2 cameras)

Fig. 3. Experimental results of the corresponding 3D point
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Monte Carlo simulation is used here as a sampling method for ana-
lyzing uncertainty propagation. Inputs (coordinates on image plane) are
randomly generated from probability distributions (normal or uniform) us-
ing MINITAB R©. Results of the simulation are showed here (Fig. 4 and Fig.
5).

Fig. 4. Sampling on image planes (2 cameras)

Fig. 5. Stochastic uncertainty propagation results

MAPLE R© software has been used to calculate an explicit solution of the
analytical model based on covariance propagation (Eq. 6). The covariance
matrix of the corresponding 3D point (Eq. 7) is computed and the results
as highlighted hereafter show similar results (experimental, stochastic un-
certainty propagation and explicit solution for covariance propagation).

Cov(f(−→u )) =

 2.533e−5 −1.828e−6 −1.828e−6

−1.828e−6 2.533e−5 −1.828e−6

−1.558e−5 −1.828e−6 2.533e−5

 σX = 0.0050mm
σY = 0.0032mm
σZ = 0.0068mm

(9)
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5. Conclusion

This paper presents models used for the setup and the validation of a mul-
tiple camera based measurement system for the pose estimation of a robot
end-effector.

The multiple camera model based on linear projective transformation
on image plane coupled with the visibility model lead to a geometric model
for multiple camera measurement (number of cameras and relative position
and orientation between cameras) and enable world coordinates calculation
and 3D object pose estimation.

The study carried out here explores uncertainty on the position of the
centers of markers when their position on the camera coordinate system is
measured. The uncertainty propagation approach described here is based
on stochastic uncertainty propagation as well as an explicit solution for
covariance propagation.

Experimental results showed similar results compared to stochastic un-
certainty propagation and explicit solution for covariance propagation when
using two cameras.
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