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SUMMARY :  Controlling complex surfaces (surfaces with an algebraic equation of an order  greater or equal than 2, or trans- 
cendantal equations) is highly difficult with the usual methods. 
Since the 3 axis measuring machines appeared, the task of researchers has been to solve the two main aspects of  this con- 
trol: 
- Positioning the object to be controlled (1) and (2). 
- Evaluating the difference between the theoretical and actual forms, each surface being specifically studied. 
These works, although they have certainly helped the manual process, have not, however, suppressed the result’s subjecti- 
vity, as they leave to the operator the choice of the positioning of the control reference. This choice is of great in- 
fluence upon the value of the obtained differences. The method suggested hereafter is perfectly objective it suppresses 
the accurate balancing of the object and provides with a reference such that differences are minimum. 
This method can also be applied to the problem of balancing raw objects of huge dimensions. 
 
 
 

 
Position of the problem: 
Controlling complex surfaces (surfaces with an algebraic equation 
of an order  greater or equal than 2, or transcendental equations) 
is highly difficult with the usual methods. 
Since the 3 axis measuring machines appeared, the task of 
researchers has been to solve the two main aspects of this 
control: 

- a) Positioning the object to be controlled [1] and [2]. 
- b) Evaluating the difference between the theoretical and        
actual forms, each surface being specifically studied [3]. 

 
These works, although they have certainly helped the manual 
process, have not, however, suppressed the result’s subjectivity, 
as they leave to the operator the choice of the positioning of the 
control reference. This choice is of great influence on the value 
of the obtained differences.  
The method suggested hereafter is perfectly objective; it 
suppresses the accurate balancing of the object and provides with 
a reference such that differences are minimum. 
This method can also be applied to the problem of balancing raw 
objects of huge dimensions (alternator casing, turbine shaft 
etc... 
 
 
Presentation of the method: 
 
Let us consider the surface (S) defined in fig. 1 to be controlled 
the «fitting engine». The surface (defined in the frame AX, Y, Z) 
is not necessarily known by its equation but can be defined by a 
list (X, Y, Z, a, b, c) of the coordinates X, Y, Z of a series of 
n theoretical points (in which the control will be applied) and by 
the components a, b, c of the normal vectors to the surface at the 
considered points. 
 
If the part is positioned in a non-over constrained set-up on the 
CMM (Coordinate Measuring machine), the measured points obviously 
differ from their theoretical positions (fig.2), and some 
deviations can be observed.  
 
Currently, the operator attempts to align the two sets of points, 
either manually or with the help of a computer which determines 
the necessary displacement to be performed by considering that the 
part is perfect (traditional axis change calculation). The piece 
is not perfect, the operator repeats this operation several times 
until he estimates the matching to be correct. 
 
Despite the use of a computer, the operation is completely 
subjective and the results of control will vary in function of the 
operator.  
 
In the paper, we propose to determine the optimal fitting between 
the measured and the theoretical points.  

Let us consider 
Ω!

𝐷!
 , the torsor of the small displacements, 

calculated at the point A, which should allow to move the part 
from its current position 1 to the position 2 so that the measured 
points best fit the theoretical ones in a coordinate frame 
attached to the measuring system.  
Let us consider Xi, Yi, and Zi, the coordinates of the theoretical 
point Mth, and n !, the normal vector to the theoretical surface at 
the considered point (Fig. 3).  

Mi is the actual point, defined as the intersection between the 
actual surface and n ! .  
 
As the actual surface does not perfectly match the theoretical 
one, the point Mi does not necessarily correspond to Mth, and the 
measured deviation along the normal vector   n !  is given by Mi Mth = 

ςi. These deviations are minimized by giving a displacement so 
that the final position of the point Mi belongs to the tangent 
plane of the theoretical surface at Mth. 
 
This can be expressed according to equation (1): 𝐷! " ∙ 𝑛 ! = 𝜉 !   (1) 
 
As the displacements are supposed to be very small, they verify: 
𝐷! " = 𝐷! + 𝑀 !𝐴⋀Ω   
 
where A is a reference point. 
Then:  (𝐷! + 𝑀 !𝐴⋀Ω ) ∙ 𝑛 ! = 𝜉 !  
       𝐷! ∙ 𝑛 ! + (𝑀 !𝐴 , Ω , 𝑛 !) = 𝜉 ! 
       𝐷! ∙ 𝑛 ! + (𝐴𝑀 ! ∧ 𝑛 !) ∙ Ω = 𝜉 !                   (2) 
 
Expressed in this form, equation (2) represents the cross-product 

between the small displacement torsor, Ω
𝐷!

 and the torsor of the 

Plückériennes coordinates of the vector 𝑛 !, 

 𝒞 𝑖
n !

𝐴𝑀 ! ∧ 𝑛 !
  

which can by written in the condensed form as: 𝒞 𝑖   D = 𝜉 ! 
 
A similar relationship can be written for each measured point. 
This leads to the linear system:  

𝒞 !  ·D = 𝜉  

where : 𝜉 represents the vector of the measured deviations 𝜉 ! 
D  represents the vector of the displacement 
𝒞 ! represents the transposed matrix of the plückériennes 
coordinates of the normal vector. 

The unknowns are the 6 components (α, β, γ, u, v, w) of the small 

displacement torsor 
Ω!

𝐷!
 .  

As all the relationships in (2) are linear, 6 independent 
equations are necessary to solve the problem.  
But, if only 6 points are measured, the number of measured points 
would not be sufficient to give a representative image of the part 
shape. 
 
If we assume that the surface (or set of surfaces) is defined by n 
points (n = 100, for instance), it is possible to write n 
equations of type (I).  
This gives a linear system of n equations for 6 unknowns.  
 
The problem resolution thus consists in finding the small 
displacement that better satisfies the n equations. This can be 
solved by using the least-square method for which W, the residual 
defined by equation (3), must be minimized: 
 
                       𝑊 = (𝑃! ∙ D − 𝜉 ! )!!

!          (3) 
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The optimization problem leads to the following linear system:  
 

 
           

!"

!"
= 0              !"

!"
= 0            !"

! "
= 0        

 
           

!"

!"
= 0              !"

! "
= 0            !"

!"
= 0        

 
The resolution of this linear system gives the components of the 
displacement torsor (α, β, γ, u, v, w), displacement that we call 
the significant displacement and which corresponds to the optimal 
balancing of the part.  
It is interesting to notice that the deviation distribution is 
gaussian. As a result, ouliers do not significantly affect the 
final solution. 
 
RESULTS: 
 
The exploitation of the results is immediate: 
 
1 – The significant displacement is applied to the measured points 
by calculation, and the new deviations between the theoretical 
shape and the actual one can be evaluated (distance to the tangent 
plane). 
If a plotter is coupled to the CMM, it is possible to draw the 
surface topography of each section.  
 
Results for the fitting engine are proposed below (extract of the 
results). 
 
 

 
 
It worth noting that the measured deviations along z introduced in 
the computer are better than the best results of control obtained 
by a companion after a huge effort to manually balance the part on 
the CMM. The reduction of the observed deviations is significant.  
In practice, it is obviously vain to attempt to manually carry out 
the best balancing.  
 
2- The method assessment is performed as follows: 
Considering a set-up of control defined by 6 adjustable contact 
points, a first series of measurements is carried out. From these 
measurements, the significant displacement of the part is 
calculated thanks to the proposed method. From the significant 
displacement, it is thus possible to calculate the displacement to 
be applied to each contact point Ci of the set-up according to the 
following equation: 
 
𝐷! " = 𝐷! + 𝐶 !𝐴⋀Ω   
 
A new series of measurements allow the comparison between the 
optimized deviations and the new measured deviations. Results are 
consistent to the hundredth of a millimeter. 
 
3- The experimental assessment previously described is technically 
(actually) a balancing operation. The method can thus be used to 
optimally solve any kind of balancing problem. 
 

4- This method is very efficient for simple cases (see figures): 
flatness, circularity or cylindricity evaluations. 
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