Fault-Tolerant Supervisory Control

Thomas Moor Friedrich-Alexander Universität Erlangen-Nürnberg

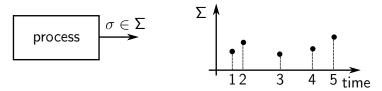
> IFAC DCDS 2015 Cancun, Mexico

Disclaimer: allthough revised for distribution, information given on this set of slides is incomplete.

1. Supervisory Control **Discrete-Event Systems** Closed-Loop Configuration Controller Synthesis Naive Approach

A discrete-event system is a model of a process ... with a particular focus the ocurrence of events

- finite set Σ of symbols $\sigma \in \Sigma$ (alphabet)
- o only event ordering is regarded relevant (logic time)
- \circ within finite time a finite sequence $s\in\Sigma^*$ is generated
- \circ set $L\subseteq \Sigma^*$ of sequences that can be generated



A discrete-event system is a model of a process ... with a particular focus the ocurrence of events

- finite set Σ of symbols $\sigma \in \Sigma$ (alphabet)
- o only event ordering is regarded relevant (logic time)
- \circ within finite time a finite sequence $s\in\Sigma^*$ is generated
- \circ set $L\subseteq \Sigma^*$ of sequences that can be generated
- \circ write pre *L* to emphasise that *L* = pre *L* (local behaviour)

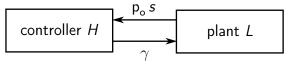
prefix operator pre $L := \{s | \exists t : st \in L\}$

A closed language pre $L \subseteq \Sigma^*$ is a discrete-event system.

Discrete-Event Systems	2	
	A natural domain of interpretation for	
	models with liveness properties are ω -	
Properties	languages, i.e., sets of inf. strings $w \in \Sigma^{\omega}$.	
	In the absence of deadlocks, use	
 safety – bad things never happen 	$lim pre L := \{ w \in \Sigma^\omega \; pre w \subseteq pre L \; \}$	
with pre $E \subseteq \Sigma^*$, require	to model the process w.r.t. infinite time.	
pre $L\subseteq$ pre E	If, in addition, there are no livelocks, choose <i>L</i> s.t. $L = M \cap \text{pre } L$ and consider	
\circ liveness – good things do happen	$\lim L := \{w \in \Sigma^{\omega} (\operatorname{pre} w \cap L) = \infty\},$	
	to model the process w.r.t. infinite time.	
free of deadlocks		
$(oralls\inpreL)(\exists\sigma\in\Sigma)[s\sigma\inpreL]$		
free of livelocks wrt $M \subset \Sigma^*$		
$(orall s \in \stackrel{-}{ ext{pre}} L) (\exists t \in \Sigma^*) [st \in M \cap ext{pre} L]$		
For systems with liveness properties:		

A language $L \subseteq \Sigma^*$ is a discrete-event system.

With the common partitioning $\Sigma = \Sigma_c \dot{\cup} \Sigma_{uc} = \Sigma_o \dot{\cup} \Sigma_{uo}$ regarding controllable and observable events, consider a plant $L \subseteq \Sigma^*$.



- At any time, the controller is provided $p_o s \in \Sigma_o^*$ where $s \in \Sigma^*$ is the sequence generated so far;
- \circ in return, the controller applies a control pattern γ of enabled events, where $\Sigma_{\rm uc}\subseteq\gamma$;
- \circ liveness properties of the plant shall be retained.

natural projection $p_o\,\Sigma^*\,\to\,\Sigma_o^*$ to remove any symbols not from $\Sigma_o.$

Def. A controller $H \subseteq \Sigma^*$ is admissible w.r.t. the plant $L \subseteq \Sigma^*$, if [H0] H = pre H[H1] $H\Sigma_{uc} \subseteq H$, [H2] $H = p_o^{-1} p_o H$, [H3] (pre L) \cap (pre H) does not deadlock, and [H4] (pre L) \cap (pre H) = pre ($L \cap H$).

Then, $K := L \cap H$ represents the cosed-loop behaviour.

Thm. Consider tha case $\Sigma_c \subseteq \Sigma_o$. For a plant $L \subseteq \Sigma^*$ and an admissible controller $H \subseteq \Sigma^*$ let $K = L \cap H$. Then

[K0] K is relatively prefix-closed w.r.t. L,

[K1] K is controllable w.r.t. L,

[K2] K prefix-normal w.r.t. L, and

[K3] K does not deadlock.

Vice versa, if K satisfies [K0]-[K3], then there exists an admissible controller H such that $K = L \cap H$.

Control Problem. Given (L, E) with plant $L \subseteq \Sigma^*$ and a specification $E \subseteq \Sigma^*$ construct an admissible controller $H \subseteq \Sigma^*$ such that

$$K := L \cap H \subseteq E.$$

Solution. All properties properties are retained under arbitraty union. Thus

$$K^{\uparrow} = \sup\{K \subseteq L \cap E \mid K \text{ satisfies } [K0]-[K3]\}$$

itself satisfies [K0]–[K3] and is used to extract a minimal restrictive controller.

Note. E can be substituted by a closed language without affecting solutions – it is effectively a safety specification.

Control Problem. Given (L, E) with plant $L \subseteq \Sigma^*$ and a specification $E \subseteq \Sigma^*$ construct an admissible controller $H \subseteq \Sigma^*$ such that

$$K := L \cap H \subseteq E.$$

Solution. All properties properties are retained under arbitraty Interpretation by corresponding ω – languages union. Thus \circ in general, E can not be substituted by a closed $K^{\uparrow} = \sup\{K \subset L \cap$ language \circ if E is (rel.) closed, same solution procedures as itself satisfies [K0]–[K3] and is u with *-languages (Ramadge 1989, Kumar et al 1993, Moor et at 2012) controller. \circ if E is not (rel.) closed it imposes liveness properties — completely different story **Note.** *E* can be substituted by \circ solution procedure for $\Sigma_{\alpha} = \Sigma$ by Thistle and Wonham 1994 solutions – it is effectivly a safet \circ solution procedure for $\Sigma_{o} \neq \Sigma$ and closed L by Thistle and Lamouchi 2009

Supervisory Control
 Discrete-Event Systems
 Closed-Loop Configuration
 Controller Synthesis

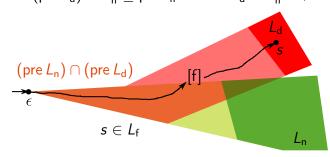
Fault-Tolerant Control
 Naive Approach
 Active Fault-Tolerant Control
 Post-Fault Recovery
 Fault-Hiding Approach

Fault-Tolerant Control

- \circ a fault is a sudden change of behaviour
- passive approach: have a single controller that can handle pre-fault and post-fault behaviour (robust control)
- active approach: detect the fault and switch to another controller (adaptive control)
- \circ core challenge: switching of plant and controller dynamics
- ... for continuous systems. However, for discrete-event systems ...

Sudden change of behaviour and switching in the control scheme are the very nature of discrete-event systems. Hence, fault-tolerant control can be synthesised by the same methods as nominal control [??]

- \circ nominal plant $\mathit{L}_n \subseteq \Sigma_n$
- \circ fault event f $\not\in \Sigma_n$, uncontrollable and unobservable
- degraded post-fault behaviour $L_d \subseteq \Sigma_f^*$ with $\Sigma_f = \Sigma_n \dot{\cup} \{f\}$ and (pre L_d) $\cap \Sigma_n^* \subseteq$ pre L_n and $L_d \cap \Sigma_n^* = \emptyset$



- \circ nominal plant $\mathit{L}_n \subseteq \Sigma_n$
- \circ fault event f $\not\in \Sigma_n$, uncontrollable and unobservable
- \circ degraded post-fault behaviour $L_d \subseteq \Sigma_f^*$ with $\Sigma_f = \Sigma_n \dot{\cup} \{f\}$ and $(\text{pre } L_d) \cap \Sigma_n^* \subseteq \text{pre } L_n$ and $L_d \cap \Sigma_n^* = \emptyset$

∘ fault-accommodating model $L_f = L_n \cup L_d$ where pre $L_f = (\text{ pre } L_n) \cup (\Sigma_n^* f \Sigma_f^* \cap \text{ pre } L_d)$ $L_f = L_n \cup (\Sigma_n^* f \Sigma_f^* \cap L_d)$

 \circ likewise, the specification $E_{\rm f}=E_{\rm n}\cup E_{\rm d}$ to accommodate for degraded post-fault performance $E_{\rm d}$

- \circ invoke synthesis procedure for $(L_{\rm f}, E_{\rm f})$ to obtain a minimal restrictive admissible fault-tolerant controller $H_{\rm f}.$
- \circ note: diagnosibility required only relative to specifications
- \circ option: re-interpretation $H_{\rm f}$ as active fault-tolerant control

switch on first escape from H_n : $T := \{ s \in \Sigma_f^* \mid \exists \sigma : s\sigma \in H_f \not\leftrightarrow s\sigma \in p_f^{-1} H_n \}$ $H_d := \{ s\sigma \in H_f \mid (\text{pre } s) \cap T \neq \emptyset \} \cup \{ \epsilon \}$ $H_f = ((p_f^{-1} H_n) \cap (\Sigma_f^* - T\Sigma_f \Sigma_f^*)) \cup H_d$

- \circ invoke synthesis procedure for $(L_{\rm f}, E_{\rm f})$ to obtain a minimal restrictive admissible fault-tolerant controller $H_{\rm f}.$
- \circ note: diagnosibility required only relative to specifications
- \circ option: re-interpretation $H_{\rm f}$ as active fault-tolerant control
- \circ note: in general, $\mathit{H}_{f} \cap \Sigma_{n}^{*}$ is not admissible w.r.t. L_{n}

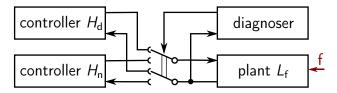
this requires two more closed-loop properties for the synthesis of H_f : [K4] $K \cap \Sigma_n^*$ does not deadlock [K5] pre $(K \cap \Sigma_n^*) = (\text{pre } K) \cap \Sigma_n^*$

- \circ invoke synthesis procedure for (L_f, E_f) to obtain a minimal restrictive admissible fault-tolerant controller H_f .
- \circ note: diagnosibility required only relative to specifications
- \circ option: re-interpretation $H_{\rm f}$ as active fault-tolerant control
- \circ note: in general, $\mathit{H}_{f} \cap \Sigma_{n}^{*}$ is not admissible w.r.t. L_{n}
- \circ option: compute a minimal restrictive nominal controller H_n that solves (L_n, E_n) and test whether $L_f \cap H_f \cap \Sigma_n^* = L_n \cap H_n$

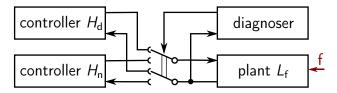
we have $L_f \cap H_f \cap \Sigma_n^* \subseteq E_f \cap \Sigma_n^* = E_n$ for free, and, if $H_f \cap \Sigma_n^*$ is admissible w.r.t. L_n , $L_f \cap H_f \cap \Sigma_n^* \subseteq L_n \cap H_n$

- \circ invoke synthesis procedure for (L_f, E_f) to obtain a minimal restrictive admissible fault-tolerant controller H_f .
- \circ note: diagnosibility required only relative to specifications
- \circ option: re-interpretation $H_{\rm f}$ as active fault-tolerant control
- \circ note: in general, $\mathit{H}_{f} \cap \Sigma_{n}^{*}$ is not admissible w.r.t. L_{n}
- \circ option: compute a minimal restrictive nominal controller H_n that solves (L_n, E_n) and test whether $L_f \cap H_f \cap \Sigma_n^* = L_n \cap H_n$
- \circ option: explicit diagnosis by controllable event $\mathsf{F}\in \Sigma_n$ with plant $p_{\mathsf{F}}^{-1}\,\mathcal{L}_f$ and specification $(p_{\mathsf{F}}^{-1}\,\mathcal{E}_f)\,\cap\,\mathsf{pre}\,(\Sigma_n^*\mathsf{f}\Sigma_f^*\mathsf{F}\Sigma_f^*)$

need to interpret F as forcible event



- \circ require the fault to be diagnosible, denote $\mathcal{T}\subseteq \mathit{L}_d$ the strings corresponding to f-certain diagnoser states
- require/test that the post-fault behaviour satisfies a safety specification (safe diagnosibility)
- o design H_d to take over H_n when the plant first enters T
 o note: nominal pre-fault behaviour is guaranteed
 o option: synthesise H_d online once the fault has been detected



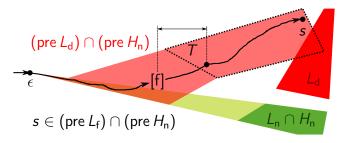
• require the fault to be diagnosible, denote $T \subseteq L_d$ the strings corresponding to f-certain diagnoser states

 require/test that the post-fault be specification (safe diagnosibility) 	diagnoser: observer automaton with de- dicated state labels
\circ design ${\it H}_{\rm d}$ to take over ${\it H}_{\rm n}$ when the	<i>f-certain state</i> : state in which the fault must have occured.
\circ note: nominal pre-fault behaviour i	<i>diagnosibility</i> : require the plant to evol-
\circ option: synthesise ${\it H}_{\rm d}$ online once t	ve to an f-certain state after a bounded number of transitions.

 \circ diagnosibility ensures that every string after f evolves into \mathcal{T} $\mathcal{T} = \{ s \in (\text{pre } L_d) \cap (\text{pre } H_n) \, | \, (p_o^{-1} p_o s) \cap (\text{pre } L_f) \subseteq \Sigma_n^* f \Sigma_f^* \, \}$

 \circ safe diagnosibility ensures that

$$[(\mathsf{pre}\ L_{\mathsf{d}}) \cap (\mathsf{pre}\ H_{\mathsf{n}})] - \mathcal{T}\Sigma_{\mathsf{f}}^* \subseteq \mathcal{E}_{\mathsf{d}}$$



Literature: Paoli et al 2005, 2008, 2011

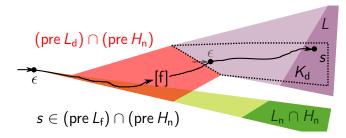
◦ diagnosibility ensures that every string after f evolves into T $T = \{s \in (\text{pre } L_d) \cap (\text{pre } H_n) \, | \, (p_o^{-1} \, p_o \, s) \cap (\text{pre } L_f) \subseteq \Sigma_n^* f \Sigma_f^* \, \}$

 \circ safe diagnosibility ensures that

 $[(\mathsf{pre}\, L_d) \cap (\mathsf{pre}\, H_n)] - \mathcal{T}\Sigma_f^* \subseteq \mathit{E}_d$

 \circ synthesise H_d for the post-fault detection plant

$$L = \{s | \exists t : ts \in L_d | (pre s) \cap T = s \in H_n\}$$



Literature: Paoli et al 2005, 2008, 2011

◦ diagnosibility ensures that every string after f evolves into T $T = \{s \in (\text{pre } L_d) \cap (\text{pre } H_n) \, | \, (p_o^{-1} p_o s) \cap (\text{pre } L_f) \subseteq \Sigma_n^* f \Sigma_f^* \, \}$

 \circ safe diagnosibility ensures that

 $[(\mathsf{pre}\, L_d) \cap (\mathsf{pre}\, H_n)] - \mathcal{T}\Sigma_f^* \subseteq \mathit{E}_d$

 \circ synthesise ${\it H}_{\rm d}$ for the post-fault detection plant

$$L = \{s | \exists t : ts \in L_d | (pre s) \cap T = s \in H_n\}$$

o re-interpret within naive approach:

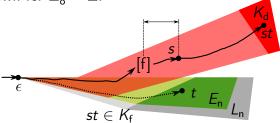
- synthesise H_{f} with pre { $s\sigma \in T | s \notin T$ } $\subseteq E_{d}$
- test for $\mathit{L}_{f}\cap \mathit{H}_{f}\cap \Sigma_{n}^{*}=\mathit{L}_{n}\cap \mathit{H}_{n}$
- extract $H_{\rm d}$ from $H_{\rm f}$
- mimique re-initialisation

Post-Fault Recovery: nominal safety specification

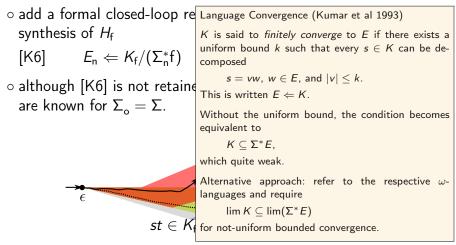
 \circ add a formal closed-loop requirement to [K0]-[K3] for the synthesis of ${\it H}_{\rm f}$

 $[\mathsf{K6}] \qquad \textit{E}_{n} \Leftarrow \textit{K}_{f}/(\Sigma_{n}^{*}f)$

 \circ although [K6] is not retained under union, synthesis procedures are known for $\Sigma_{o}=\Sigma.$



Post-Fault Recovery: nominal safety specification



Literature: Sülek and Schmidt 2014, Willner and Heymann 1994, Schmidt and Breindl 2014

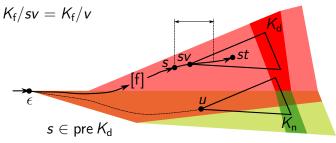
Post-Fault Recovery: liveness

 \circ a closed loop $K_{\rm f} = K_{\rm n} \cup K_{\rm d}$ is fault toleant if

[K7] there exists a uniform bound k such that for every s, t, $|t| \ge k$ with

 $s \in (\operatorname{pre} K_{\mathrm{f}}) - (\operatorname{pre} K_{\mathrm{n}}) \text{ and } st \in \operatorname{pre} K_{\mathrm{f}}$

there exists $u \in \operatorname{pre} K_n$, $v \in \operatorname{pre} t$, $|v| \leq k$ with



Post-Fault Recovery: liveness

 \circ a closed loop $\mathit{K}_{f} = \mathit{K}_{n} \cup \mathit{K}_{d}$ is fault toleant if

[K7] there exists a uniform bound k such that for every s, t, $|t| \ge k$ with

 $s \in (\operatorname{pre} K_{\mathrm{f}}) - (\operatorname{pre} K_{\mathrm{n}}) \text{ and } st \in \operatorname{pre} K_{\mathrm{f}}$

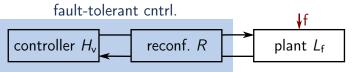
there exists $u \in \text{pre } K_n$, $v \in \text{pre } t$, $|v| \leq k$ with

$$K_{\rm f}/sv = K_{\rm f}/v$$

- synthesis problem: given $L_f = L_n \cup L_d$ and E_f , compute an admissible controller H_f such that the closed loop satisfies [K7].
- \circ the property is not retained under union; synthesis procedure exists for $\Sigma_{o}=\Sigma$

Fault Hiding

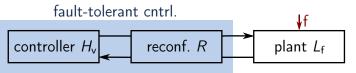
Given $L_f = L_n \cup L_d$, $E_f = E_n \cup E_d$, and a solution H_n to (L_n, E_n)



- \circ disconnect nominal controller, i.e., $H_v = h(H_n) \subseteq \Sigma_v^*$ with $\Sigma_v \cap \Sigma_f = \emptyset$, h bijective and applied per event.
- \circ synthesise reconfiguration dynamics $R \subseteq (\Sigma_{\mathsf{v}} \cup \Sigma_{\mathsf{o}})^*$ to re-connect
- \circ do so by interpreting $H_v \parallel L_f$ as plant and use std. procedures on adapted language inclusion specification

Fault Hiding

Given $L_f = L_n \cup L_d$, $E_f = E_n \cup E_d$, and a solution H_n to (L_n, E_n)



 \circ when using a minimal restrictive solution H_v^{\uparrow} for the design, and if the closed loop K satisfies in addition to [K0]-[K3]

 $\begin{array}{l} [\mathsf{K8}] & (\forall s \in \operatorname{pre} K)[((\mathsf{p}_v s) \cap h(\Sigma_{uc}) \cap (\operatorname{pre} h(L_n)) \neq \emptyset \\ \Rightarrow s(\Sigma - h(\Sigma_c))^* h(\Sigma_{uc}) \cap (\operatorname{pre} K) \neq \emptyset] \end{array}$

then *R* is admissible to any nominal controller that solves (L_n, E_n) .

- \circ [K8] is retained under union, synthesis procedures are known.
- \circ note: nominal controller does not need to be known

Literature: Wittmann et al 2013

Summary

Fault-tolerant supervisory control is addressed by the recent literature in various ways, including passive and active approaches, post-fault recovery and fault-hiding.

Conclusions

- \circ switching is addressed by the common modelling framework any method for fault-tolerant supervisory control should be interpretable within this framework
- \circ additional features of individual approaches amount to additional closed-loop properties and novel synthesis problems
- \circ insisting in uniform bounds for diagnosibility and language convergence may be too strict for particular applications discussion in terms of ω -languages may turn out beneficial

Literature — Supervisory Control

- Kumar, R., Garg, V., and Marcus, S. (1993). Language stability and stabilizability of discrete event dynamical systems. SIAM J. Control and Optimization, 31, 1294–1320.
- Lin, F. and Wonham, W.M. (1988). On observability of discrete-event systems. Information Sciences, 44, 173–198.
- Moor, T., Baier, C., Yoo, T.S., Lin, F., and Lafortune, S. (2012). On the computation of supremal sublanguages relevant to supervisory control. WODES, 175–180.
- Ramadge, P.J. and Wonham, W.M. (1989). The control of discrete event systems. Proceedings of the IEEE, 77, 81–98.
- Ramadge, P.J. (1989). Some tractable supervisory control problems for discrete-event systems modeled by büchi automata. IEEE TAC, 34, 10–19.
- Sampath, M., Sengupeta, R., , Lafortune, S., and Sinnamohideen, K. (1995). Diagnosability of discrete-event systems. IEEE TAC, 40:9, 1555–1575.
- Thistle, J.G. and Lamouchi, H.M. (2009). Effective control synthesis for partially observed discrete-event systems. SIAM J. Control and Optimization, 48, 1858–1887.
- Thistle, J.G. and Wonham, W.M. (1994). Supervision of infinite behavior of discrete event systems. SIAM J. Control and Optimization, 32, 1098–1113.
- Willner, Y. and Heymann, M. (1995). Language convergence in controlled discrete-event systems. IEEE TAC, 40(4), 616–627.

[more references are given in the paper]

Literature — Fault-Tolerant Control

- Paoli, A. and Lafortune, S. (2005). Safe diagnosability for fault-tolerant supervision of discrete-event systems. Automatica, 41(8), 1335–1347.
- Paoli, A., Sartini, M., and Lafortune, S. (2008). A fault tolerant architecture for supervisory control of discrete event systems. Proceedings of the 17th IFAC world congress, 6542–6547.
- Paoli, A., Sartini, M., and Lafortune, S. (2011) . Active fault tolerant control of discrete event systems using online diagnostics. Automatica, 47(4), 639–649.
- Sülek, A.N. and Schmidt, K.W. (2014). Computation of supervisors for fault-recovery and repair for discrete event systems. WODES, 428–438.
- Wen, Q., Kumar, R., and Huang, J. (2014). Framework for optimal fault-tolerant control synthesis: maximize prefault while minimize post-fault behaviorsfor discrete event systems. IEEE Trans. Syst. Man Cybern. Syst., 44, 1056–1066.
- Wen, Q., Kumar, R., Huang, J., and Liu, H. (2008). A framework for fault-tolerant control for discrete event systems. IEEE TAC, 53, 1839–1849.
- Wittmann, T., Richter, J., and Moor, T. (2012). Fault-tolerant control of discrete event systems based on fault-accommodating models. SAFEPROCESS, 854–859.
- Wittmann, T., Richter, J., and Moor, T. (2013). Fault-hiding control reconfiguration for a class of discrete-event systems. IFAC DCDS.

[more references are given in the paper]