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Discrete-Event Systems 1

A discrete-event system is a model of a process
. . . with a particular focus the ocurrence of events

◦ finite set Σ of symbols σ ∈ Σ (alphabet)

◦ only event ordering is regarded relevant (logic time)

◦ within finite time a finite sequence s ∈ Σ∗ is generated

◦ set L ⊆ Σ∗ of sequences that can be generated

process
σ ∈ Σ

time

Σ

1 2 3 4 5

◦ write pre L to emphasise that L = pre L (local behaviour)
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A discrete-event system is a model of a process
. . . with a particular focus the ocurrence of events

◦ finite set Σ of symbols σ ∈ Σ (alphabet)

◦ only event ordering is regarded relevant (logic time)

◦ within finite time a finite sequence s ∈ Σ∗ is generated

◦ set L ⊆ Σ∗ of sequences that can be generated

◦ write pre L
prefix operator pre L := {s| ∃ t : st ∈ L}

to emphasise that L = pre L (local behaviour)

A closed language pre L ⊆ Σ∗ is a discrete-event system.

Literature: Ramadge and Wonham 1989



Discrete-Event Systems 2

Properties

◦ safety – bad things never happen
with preE ⊆ Σ∗, require

pre L ⊆ preE

◦ liveness – good things do happen
free of deadlocks

(∀ s ∈ pre L )(∃σ ∈ Σ )[ sσ ∈ pre L ]

free of livelocks wrt M ⊆ Σ∗

(∀ s ∈ pre L )(∃ t ∈ Σ∗ )[ st ∈ M ∩ pre L ]

A natural domain of interpretation for
models with liveness properties are ω-
languages, i.e., sets of inf. strings w ∈ Σω .

In the absence of deadlocks, use

lim pre L := {w ∈ Σω | prew ⊆ pre L }
to model the process w.r.t. infinite time.

If, in addition, there are no livelocks, choo-
se L s.t. L = M ∩ pre L and consider

lim L := {w ∈ Σω | ||(prew∩L)|| =∞},
to model the process w.r.t. infinite time.

For systems with liveness properties:

A language L ⊆ Σ∗ is a discrete-event system.



Closed-Loop Configuration 3

With the common partitioning Σ = Σc∪̇Σuc = Σo∪̇Σuo regarding
controllable and observable events, consider a plant L ⊆ Σ∗.

controller H plant L

po s

γ

◦ At any time, the controller is provided po s ∈ Σ∗o where s ∈ Σ∗ is
the sequence generated so far;

natural projection po Σ∗ → Σ∗o to remove
any symbols not from Σo.

◦ in return, the controller applies a control pattern γ of enabled
events, where Σuc ⊆ γ;

◦ liveness properties of the plant shall be retained.

Literature: Ramadge and Wonham 1987, Lin and Wonham 1988



Closed-Loop Configuration 4

Def. A controller H ⊆ Σ∗ is admissible w.r.t. the plant L ⊆ Σ∗, if

[H0] H = preH

[H1] HΣuc ⊆ H,

[H2] H = p−1
o po H,

[H3] (pre L) ∩ (preH) does not deadlock, and

[H4] (pre L) ∩ (preH) = pre (L ∩ H) .

Then, K := L ∩ H represents the cosed-loop behaviour. �

Literature: Lin and Wonham 1988, Kumar et al 1992, Moor et al 2012



Closed-Loop Configuration 5

Thm. Consider tha case Σc ⊆ Σo. For a plant L ⊆ Σ∗ and an
admissible controller H ⊆ Σ∗ let K = L ∩ H. Then

[K0] K is relatively prefix-closed w.r.t. L,

[K1] K is controllable w.r.t. L,

[K2] K prefix-normal w.r.t. L, and

[K3] K does not deadlock.

Vice versa, if K satisfies [K0]-[K3], then there exists an admissible
controller H such that K = L ∩ H. �

Literature: Lin and Wonham 1988, Kumar et al 1992, Moor et al 2012



Controller Synthesis 6

Control Problem. Given (L,E ) with plant L ⊆ Σ∗ and a
specification E ⊆ Σ∗ construct an admissible controller H ⊆ Σ∗

such that
K := L ∩ H ⊆ E .

Solution. All properties properties are retained under arbitraty
union. Thus

K ↑ = sup{K ⊆ L ∩ E |K satisfies [K0]–[K3] }

itself satisfies [K0]–[K3] and is used to extract a minimal restrictive
controller.

Note. E can be substituted by a closed language without affecting
solutions – it is effectivly a safety specification.



Controller Synthesis 6

Control Problem. Given (L,E ) with plant L ⊆ Σ∗ and a
specification E ⊆ Σ∗ construct an admissible controller H ⊆ Σ∗

such that
K := L ∩ H ⊆ E .

Solution. All properties properties are retained under arbitraty
union. Thus

K ↑ = sup{K ⊆ L ∩ E |K satisfies [K0]–[K3] }

itself satisfies [K0]–[K3] and is used to extract a minimal restrictive
controller.

Note. E can be substituted by a closed language without affecting
solutions – it is effectivly a safety specification.

Interpretation by corresponding ω − languages

◦ in general, E can not be substituted by a closed
language

◦ if E is (rel.) closed, same solution procedures as
with ∗-languages (Ramadge 1989, Kumar et al
1993, Moor et at 2012)

◦ if E is not (rel.) closed it imposes liveness pro-
perties — completely different story

◦ solution procedure for Σo = Σ by Thistle and
Wonham 1994

◦ solution procedure for Σo 6= Σ and closed L by
Thistle and Lamouchi 2009
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Naive Fault-Tolerant Control 8

Fault-Tolerant Control

◦ a fault is a sudden change of behaviour

◦ passive approach: have a single controller that can handle
pre-fault and post-fault behaviour (robust control)

◦ active approach: detect the fault and switch to another controller
(adaptive control)

◦ core challenge: switching of plant and controller dynamics

. . . for continuous systems. However, for discrete-event systems . . .

Sudden change of behaviour and switching in the control
scheme are the very nature of discrete-event systems.
Hence, fault-tolerant control can be synthesised by the
same methods as nominal control [??]



Naive Fault-Tolerant Control 9

Naive approach to fault-tolerant control:

◦ nominal plant Ln ⊆ Σn

◦ fault event f 6∈ Σn, uncontrollable and unobservable

◦ degraded post-fault behaviour Ld ⊆ Σ∗f with Σf = Σn∪̇{f} and
(pre Ld) ∩ Σ∗n ⊆ pre Ln and Ld ∩ Σ∗n = ∅

Ln

Ld

[f]

ε

s

s ∈ Lf

(pre Ln) ∩ (pre Ld)

◦ fault-accommodating model Lf = Ln ∪ Ld where
pre Lf = ( pre Ln ) ∪ ( Σ∗nfΣ

∗
f ∩ pre Ld)

Lf = Ln ∪ ( Σ∗nfΣ
∗
f ∩ Ld )

◦ likewise, the specification Ef = En ∪ Ed to accommodate for
degraded post-fault performance Ed

Literature: Wittmann et al 2012
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Naive Fault-Tolerant Control 10

Naive approach to fault-tolerant control (cnt.)

◦ invoke synthesis procedure for (Lf,Ef) to obtain a minimal
restrictive admissible fault-tolerant controller Hf.

◦ note: diagnosibility required only relative to specifications

◦ option: re-interpretation Hf as active fault-tolerant control
switch on first escape from Hn:

T := {s ∈ Σ∗f | ∃σ : sσ ∈ Hf 6↔ sσ ∈ p−1
f Hn}

Hd := {sσ ∈ Hf | (pre s) ∩ T 6= ∅} ∪ {ε}

Hf = ((p−1
f Hn) ∩ (Σ∗f − TΣfΣ

∗
f )) ∪ Hd

◦ note: in general, Hf ∩ Σ∗n is not admissible w.r.t. Ln

◦ option: compute a minimal restrictive nominal controller Hn that
solves (Ln,En) and test whether Lf ∩ Hf ∩ Σ∗n = Ln ∩ Hn

◦ option: explicit diagnosis by controllable event F ∈ Σn with plant
p−1
F Lf and specification (p−1

F Ef) ∩ pre (Σ∗nfΣ
∗
f FΣ∗f )

Literature: Wittmann et al 2012
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Naive approach to fault-tolerant control (cnt.)

◦ invoke synthesis procedure for (Lf,Ef) to obtain a minimal
restrictive admissible fault-tolerant controller Hf.

◦ note: diagnosibility required only relative to specifications

◦ option: re-interpretation Hf as active fault-tolerant control

◦ note: in general, Hf ∩ Σ∗n is not admissible w.r.t. Ln

this requires two more closed-loop pro-
perties for the synthesis of Hf:
[K4] K ∩ Σ∗n does not deadlock
[K5] pre (K ∩ Σ∗n) = (preK) ∩ Σ∗n

◦ option: compute a minimal restrictive nominal controller Hn that
solves (Ln,En) and test whether Lf ∩ Hf ∩ Σ∗n = Ln ∩ Hn

◦ option: explicit diagnosis by controllable event F ∈ Σn with plant
p−1
F Lf and specification (p−1

F Ef) ∩ pre (Σ∗nfΣ
∗
f FΣ∗f )

Literature: Wittmann et al 2012



Naive Fault-Tolerant Control 10

Naive approach to fault-tolerant control (cnt.)

◦ invoke synthesis procedure for (Lf,Ef) to obtain a minimal
restrictive admissible fault-tolerant controller Hf.

◦ note: diagnosibility required only relative to specifications

◦ option: re-interpretation Hf as active fault-tolerant control

◦ note: in general, Hf ∩ Σ∗n is not admissible w.r.t. Ln

◦ option: compute a minimal restrictive nominal controller Hn that
solves (Ln,En) and test whether Lf ∩ Hf ∩ Σ∗n = Ln ∩ Hn

we have Lf ∩ Hf ∩ Σ∗n ⊆ Ef ∩ Σ∗n = En
for free, and, if Hf ∩ Σ∗n is admissible
w.r.t. Ln,

Lf ∩ Hf ∩ Σ∗n ⊆ Ln ∩ Hn

◦ option: explicit diagnosis by controllable event F ∈ Σn with plant
p−1
F Lf and specification (p−1

F Ef) ∩ pre (Σ∗nfΣ
∗
f FΣ∗f )

Literature: Wittmann et al 2012
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Naive approach to fault-tolerant control (cnt.)

◦ invoke synthesis procedure for (Lf,Ef) to obtain a minimal
restrictive admissible fault-tolerant controller Hf.

◦ note: diagnosibility required only relative to specifications

◦ option: re-interpretation Hf as active fault-tolerant control

◦ note: in general, Hf ∩ Σ∗n is not admissible w.r.t. Ln

◦ option: compute a minimal restrictive nominal controller Hn that
solves (Ln,En) and test whether Lf ∩ Hf ∩ Σ∗n = Ln ∩ Hn

◦ option: explicit diagnosis by controllable event F ∈ Σn with plant
p−1
F Lf and specification (p−1

F Ef) ∩ pre (Σ∗nfΣ
∗
f FΣ∗f )

need to interpret F as forcible event

Literature: Wittmann et al 2012



Active Fault-Tolerant Control 11

Active fault-tolerant control

controller Hn plant Lf

controller Hd diagnoser

f

◦ require the fault to be diagnosible, denote T ⊆ Ld the strings
corresponding to f-certain diagnoser states
◦ require/test that the post-fault behaviour satisfies a safety
specification (safe diagnosibility)
◦ design Hd to take over Hn when the plant first enters T
◦ note: nominal pre-fault behaviour is guaranteed
◦ option: synthesise Hd online once the fault has been detected

Diagnosis of DES (Sampath et al 1995)

diagnoser: observer automaton with de-
dicated state labels

f-certain state: state in which the fault
must have occured.

diagnosibility: require the plant to evol-
ve to an f-certain state after a bounded
number of transitions.

Literature: Paoli et al 2005, 2008, 2011
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Active Fault-Tolerant Control 12

◦ diagnosibility ensures that every string after f evolves into T
T = {s ∈ (pre Ld) ∩ (preHn) | (p−1

o po s) ∩ (pre Lf) ⊆ Σ∗nfΣ
∗
f }

◦ safe diagnosibility ensures that
[(pre Ld) ∩ (preHn)]− TΣ∗f ⊆ Ed

◦ synthesise Hd for the post-fault detection plant
L = {s|∃ t : ts ∈ Ld|(pre s) ∩ T = s ∈ Hn}

Ln ∩ Hn

Ld[f]ε

s

s ∈ (pre Lf) ∩ (preHn)

T(pre Ld) ∩ (preHn)

Literature: Paoli et al 2005, 2008, 2011
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◦ diagnosibility ensures that every string after f evolves into T
T = {s ∈ (pre Ld) ∩ (preHn) | (p−1

o po s) ∩ (pre Lf) ⊆ Σ∗nfΣ
∗
f }

◦ safe diagnosibility ensures that
[(pre Ld) ∩ (preHn)]− TΣ∗f ⊆ Ed

◦ synthesise Hd for the post-fault detection plant
L = {s|∃ t : ts ∈ Ld|(pre s) ∩ T = s ∈ Hn}

s
Kd

L

ε

Ln ∩ Hn

[f]ε

s ∈ (pre Lf) ∩ (preHn)

(pre Ld) ∩ (preHn)

Literature: Paoli et al 2005, 2008, 2011
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◦ diagnosibility ensures that every string after f evolves into T
T = {s ∈ (pre Ld) ∩ (preHn) | (p−1

o po s) ∩ (pre Lf) ⊆ Σ∗nfΣ
∗
f }

◦ safe diagnosibility ensures that
[(pre Ld) ∩ (preHn)]− TΣ∗f ⊆ Ed

◦ synthesise Hd for the post-fault detection plant
L = {s|∃ t : ts ∈ Ld|(pre s) ∩ T = s ∈ Hn}

◦ re-interpret within naive approach:
– synthesise Hf with pre {sσ ∈ T |s 6∈ T} ⊆ Ed

– test for Lf ∩ Hf ∩ Σ∗n = Ln ∩ Hn

– extract Hd from Hf

– mimique re-initialisation

Literature: Paoli et al 2005, 2008, 2011



Post-Fault Recovery 13

Post-Fault Recovery: nominal safety specification
◦ add a formal closed-loop requirement to [K0]-[K3] for the
synthesis of Hf

[K6] En ⇐ Kf/(Σ∗nf)

◦ although [K6] is not retained under union, synthesis procedures
are known for Σo = Σ.

En

Kd

[f]
ε

s

st ∈ Kf

st

t
Ln

Literature: Sülek and Schmidt 2014, Willner and Heymann 1994, Schmidt and Breindl 2014
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Post-Fault Recovery: nominal safety specification
◦ add a formal closed-loop requirement to [K0]-[K3] for the
synthesis of Hf

[K6] En ⇐ Kf/(Σ∗nf)

◦ although [K6] is not retained under union, synthesis procedures
are known for Σo = Σ.

En

Kd

[f]
ε

s

st ∈ Kf

st

t
Ln

Language Convergence (Kumar et al 1993)

K is said to finitely converge to E if there exists a
uniform bound k such that every s ∈ K can be de-
composed

s = vw , w ∈ E , and |v | ≤ k.

This is written E ⇐ K .

Without the uniform bound, the condition becomes
equivalent to

K ⊆ Σ∗E ,

which quite weak.

Alternative approach: refer to the respective ω-
languages and require

limK ⊆ lim(Σ∗E)

for not-uniform bounded convergence.

Literature: Sülek and Schmidt 2014, Willner and Heymann 1994, Schmidt and Breindl 2014
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Post-Fault Recovery: liveness
◦ a closed loop Kf = Kn ∪ Kd is fault toleant if

[K7] there exists a uniform bound k such that for every s, t,
|t| ≥ k with

s ∈ (preKf)− (preKn) and st ∈ preKf

there exists u ∈ preKn, v ∈ pre t, |v | ≤ k with
Kf/sv = Kf/v

◦ synthesis problem: given Lf = Ln ∪ Ld and Ef, compute an
admissible controller Hf such that the closed loop satisfies [K7].

◦ the property is not retained under union; synthesis procedure
exists for Σo = Σ

Kd

[f]
ε

s

s ∈ preKd
Kn

st

u

sv

Literature: Wen et al 2008, 2014
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◦ the property is not retained under union; synthesis procedure
exists for Σo = Σ

Literature: Wen et al 2008, 2014



Fault-Hiding Approach 15

Fault Hiding

Given Lf = Ln ∪ Ld, Ef = En ∪ Ed, and a solution Hn to (Ln,En)

fault-tolerant cntrl.

controller Hv plant Lfreconf. R

f

◦ disconnect nominal controller, i.e., Hv = h(Hn) ⊆ Σ∗v with
Σv ∩ Σf = ∅, h bijective and applied per event.

◦ synthesise reconfiguration dynamics R ⊆ (Σv ∪Σo)∗ to re-connect

◦ do so by interpreting Hv ‖ Lf as plant and use std. procedures on
adapted language inclusion specification

Literature: Wittmann et al 2013
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Fault Hiding

Given Lf = Ln ∪ Ld, Ef = En ∪ Ed, and a solution Hn to (Ln,En)

fault-tolerant cntrl.

controller Hv plant Lfreconf. R

f

◦ when using a minimal restrictive solution H↑v for the design, and if
the closed loop K satisfies in addition to [K0]-[K3]

[K8] ( ∀ s ∈ preK )[ ((pv s) ∩ h(Σuc) ∩ (pre h(Ln)) 6= ∅
⇒ s(Σ− h(Σc))∗h(Σuc) ∩ (preK ) 6= ∅ ]

then R is admissible to any nominal controller that solves (Ln,En).

◦ [K8] is retained under union, synthesis procedures are known.

◦ note: nominal controller does not need to be known
Literature: Wittmann et al 2013



Summary

Fault-tolerant supervisory control is addressed by the
recent literature in various ways, including passive and
active approaches, post-fault recovery and fault-hiding.

Conclusions

◦ switching is addressed by the common modelling framework —
any method for fault-tolerant supervisory control should be
interpretable within this framework

◦ additional features of individual approaches amount to additional
closed-loop properties — and novel synthesis problems

◦ insisting in uniform bounds for diagnosibility and language
convergence may be too strict for particular applications —
discussion in terms of ω-languages may turn out beneficial
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