
Spyros Reveliotis
School of Industrial & Systems Engineering
Georgia Institute of Technology

DCDS 2015
Cancun, Mexico
Motivation: Resource allocation in flexible automation and its underlying challenges
The ubiquitousness of the deadlock problem

Thread 1
Thread 2

Lock A
Lock B

Ion trap, GTRI

The current state of art

- Current practice deals with the deadlock problem through *ad hoc* and typically very conservative solutions.

Need for a formal paradigm that enables a rigorous problem investigation and an effective trade-off between computational complexity and operational efficiency.
A modeling abstraction: Sequential Resource Allocation Systems (RAS)

- A set of (re-usable) resource types \(R = \{R_i, i = 1,\ldots,m\} \).
- Finite capacity \(C_i \) for each resource type \(R_i \).
- A set of process types \(J = \{J_j, j = 1,\ldots,n\} \).
- A (partially) ordered set of process stages for each job type, \(\{p_{jk}, k = 1,\ldots,\lambda_j\} \).
- A resource requirements vector for each process stage \(p \), \(a_p[i], i = 1,\ldots,m \).
- A timing distribution \(D(p) \) characterizing the execution time of each process stage \(p \).
- Resource Allocation Protocol: In order to advance from stage \(p \) to stage \(q \), a process must be allocated the resource differential \((a_q-a_p)^+ \) and only then it releases the unnecessary resource set expressed by \((a_p-a_q)^+ \).

Sequential RAS deadlock: A RAS state in which there exists a subset of processes s.t. every process in this subset in order to proceed requires some resource(s) currently allocated to some other process in this subset.
A RAS taxonomy

Structure of the process sequential logic

- **Linear:** each process is defined by a linear sequence of stages
- **Disjunctive:** A number of alternative process plans encoded by an acyclic digraph
- **Merge-Split or Fork-Join:** each process is a fork-join network
- **Complex:** a combination of the above behaviors

Structure of the stage resource requirement vectors

- **Single-unit:** each stage requires a single unit from a single resource
- **Single-type:** each stage requires an arbitrary number of units, but all from a single resource
- **Conjunctive:** Arbitrary number of units from different resources

Some additional interesting features: **Uncontrollable** transitions w.r.t. timing and/or routing, **Unit** resource capacities, etc.
Control of Sequential RAS: Logical vs Performance Control

Resource Allocation System

Behavioral Correctness

Efficiency
An Event-Driven RAS Control Scheme

System State Model

Feasible Actions

Logical Control

Admissible Actions

Performance Control

Configuration Data

RAS Domain

Event

Commanded Action
The “human anchoring” of the presented research

Past and Current Students:
- Jonghun Park
- Jingyoung Choi
- Theologos Bountourelis
- Ahmed Nazeem
- Hongwei Liao
 (co-adv. with S. Lafortune)
- Zhennan Fei
 (co-adv. with K. Akesson)
- Ran Li
- Stephen Daugherty

Other research groups and collaborators:
- E. Dijkstra, A. Habermann, J. Havender, R. Holt, E. Coffman, M. Elphick, A. Shoshanni,
- M. Gold, T. Araki, Y. Sugiyama and T. Kasami
- P. Ramadge and W. M. Wonham
- P. Antsaklis, J. Moody and M. Iordache
- A. Giua and M. Silva
- N. Viswanadham, Y. Narahari and T. Johnson
- Z. Banaszak and B. Krogh
- P. Ferreira, M. Lawley and his colleagues
- E. Roszkowska
- J. Ezpeleta, J.-M. Colom and their colleagues
- M. P. Fanti and her colleagues
- M. Zhou, Z. Li and their colleagues
- X. Xie, M. Jeng and their colleagues
- S. Lafortune, Y. Wang and their colleagues
- L. Piroddi and R. Cordone
- K. Barkaoui and his colleagues
- X. Cao and C. Cassandras
- D. Bertsekas, J. Tsitsiklis and their colleagues

Research Sponsors:
- Various NSF grants from
 - CMMI / MES
 - ECS & ECCS
- The ISyE Virtual Factory Lab and the Keck Foundation
- The Georgia Tech Research Institute
Finite State Automata (FSA)-based modeling of RAS behavior

The RAS state is defined by the number of active process instances at each processing stage.
Safe vs. Unsafe Region and the Optimal Deadlock Avoidance Policy

A deadlock-free unsafe state!
Complexity Considerations

• **State Safety** is an NP-complete problem in sequential RAS (by reduction of the SAT or 3SAT problem)

• **State Transition Diagram (STD) size for SU-RAS:**

\[
O\left(\binom{C + Q}{Q}^m\right)
\]

where:

• C = max resource capacity
• Q = max number of stages supported by a resource
• m = number of resource types
Efficient suboptimal solutions: Correct Polynomial-Kernel DAPs

- **Sub-optimal** one-step-lookahead policies based on state properties that are polynomially verifiable and identify a strongly connected component of the RAS state space containing the empty state

- **“Ordered”** states and **Banker’s algorithm**: Focus on “termination” sequences that are polynomially identifiable

- **“Algebraic”** PK-DAPs: Defined by polynomially-sized sets of linear inequalities on the RAS state
 - RUN (Resource Upstream Neighborhood -- available for Disjunctive / Conjunctive RAS)
 - RO (Resource Ordering – appropriate for single-type linear RAS)
Special Structure: RAS admitting optimal LES of polynomial complexity

1. **“Nested”** allocation: Resources are released in the reverse order from which they were acquired. (every safe state has an polynomially identifiable termination sequence).

2. **No deadlock-free unsafe states**: Unsafety \equiv deadlock (substitute state safety test with deadlock test, which has polynomial complexity)

Theorem: In a D-SU-RAS where every resource has at least two units of capacity, the optimal logical control policy is polynomially implementable w.r.t. the underlying RAS “size” through one-step lookahead for deadlock.

“Corollary”: For most practical configurations, deadlock-free buffer allocation in flexibly automated production systems is an easy problem (!)
Designing the maximally permissive LES (for D/C-RAS) through classification theory

Compute the reachable state space of the considered RAS

Use standard supervisory control theory to classify the various states into safe and unsafe.

Design a compact classifier that effects the aforestated dichotomy of the reachable state space.

Use this classifier on-line in order to accept or reject tentative transitions.
Some enabling ideas and results

1. The “monotonicity” property for D/C-RAS state safety:

 \[s \text{ is safe} \land s' \leq s \implies s' \text{ is safe.} \]

2. Focus the classifier construction only on the correct classification of maximal safe and minimal unsafe states.

3. Consider only “boundary” unsafe states, i.e. states that can be reached in one transition from some safe state.

4. Ignore state components corresponding to stages that cannot be entangled in deadlock (this is attained automatically by the considered methods).
Classifier “architectures”

• Another implication of the monotonicity of state safety: The safe subspace of D/C-RAS can be represented as the union of a set of polytopes, with each polytope defined by a maximal safe state.

• If the convex hull of the safe states does not contain any unsafe states, then the sought classifier can be expressed by a set of linear inequalities; such a classifier is called “linear”.

• Structurally minimal classifiers representing the target DAP can be obtained through MIP formulations and other more streamlined methods adapted from combinatorial optimization theory.
“Non-parametric” classifiers

Identify and store only the (minimal) boundary unsafe states using an efficient ("symbolic") representation.

Efficient searching for the (minimal) boundary unsafe states:
Some experimental results

<table>
<thead>
<tr>
<th># of Resources</th>
<th># of Stages</th>
<th>Reachable states</th>
<th>Boundary states</th>
<th>Min Boundary</th>
<th>Comp. Time (sec)</th>
<th>Max # of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>42</td>
<td>4.0×10^5</td>
<td>2.0×10^5</td>
<td>5.3×10^3</td>
<td>8</td>
<td>2.2×10^5</td>
</tr>
<tr>
<td>16</td>
<td>27</td>
<td>2.4×10^6</td>
<td>7.4×10^5</td>
<td>1.6×10^4</td>
<td>10</td>
<td>2.2×10^5</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>1.9×10^7</td>
<td>7.6×10^5</td>
<td>1.0×10^4</td>
<td>33</td>
<td>9.2×10^5</td>
</tr>
<tr>
<td>14</td>
<td>42</td>
<td>2.9×10^7</td>
<td>7.7×10^6</td>
<td>2.7×10^4</td>
<td>205</td>
<td>2.1×10^6</td>
</tr>
<tr>
<td>40</td>
<td>27</td>
<td>1.0×10^8</td>
<td>1.2×10^7</td>
<td>4.3×10^3</td>
<td>313</td>
<td>2.3×10^6</td>
</tr>
<tr>
<td>64</td>
<td>36</td>
<td>3.9×10^9</td>
<td>1.2×10^8</td>
<td>1.9×10^4</td>
<td>59</td>
<td>2.9×10^6</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>1.2×10^9</td>
<td>7.2×10^7</td>
<td>5.1×10^2</td>
<td>460</td>
<td>7.9×10^6</td>
</tr>
<tr>
<td>48</td>
<td>36</td>
<td>3.5×10^9</td>
<td>9.3×10^7</td>
<td>8.1×10^3</td>
<td>74</td>
<td>3.6×10^6</td>
</tr>
<tr>
<td>60</td>
<td>39</td>
<td>3.7×10^9</td>
<td>2.6×10^8</td>
<td>5.1×10^3</td>
<td>99</td>
<td>2.4×10^6</td>
</tr>
</tbody>
</table>

The employed symbolic algorithms are implemented in *Supremica* and run on a standard desktop (2.66 GHz Intel Core Quad CPU, 10GB RAM) running Windows 7.
Petri net – based modeling and analysis of the considered RAS

1. Allow for explicit modeling of the RAS structure, and thus, they can support effectively structural analysis.
2. RAS deadlock is interpreted through the structural concept of “empty (or, more generally, deadly marked) siphon”.
3. For any given marking, the maximal empty (or deadly marked) siphon is polynomially detectable (another manifestation of the polynomial detectability of RAS deadlock).
4. The logic of the siphon detection algorithm(s) can be translated to a Mixed Integer Programming formulation that can be extended to an analytical tool for assessing the liveness and reversibility of the RAS-modeling PNs.
5. Can enable an incremental synthesis of the maximally permissive DAP through “monitors”.

\[
J_1 : R_1 \rightarrow R_2 \rightarrow R_3 \\
J_2 : R_3 \rightarrow R_2 \rightarrow R_1
\]
Example: incremental synthesis of the maximally permissive DAP
Towards the RAS performance control: a basic methodology

- Resource Allocation System
 - Basic GSPN model
 - Modified GSPN model
 - Semi-Markov process
 - Markov reward process
 - Nonlinear Program
 - Stochastic approximation

Logical control

Complexity Control:
- “Static” Random Switches
- Random Switch “Refinement”
The proposed method through an example: Scheduling of a *capacitated* re-entrant line

WS 1 WS 2

I/O Port

Process route:
WS1 -> WS2 -> WS1

Maximally Permissive DAP
J1 + J2 ≤ 3

Untimed Transitions

Timed Transitions
The underlying semi-Markov process and the corresponding scheduling problem

Tangible Markings
Vanishing Markings
Tangible Markings with Rewards
Decision Points
Basic Problem Formulation

- Let
 - $\Xi = \langle \xi_{ij}:1,...,k(i) >$ the random switch for vanishing marking ν_i
 - ϵ = a minimal degree of randomization in each Ξ_i
 - Δ = the stationary policy defined by the pricing of Ξ_i for all ν_i
 - $Q(\Delta)$ = the infinitesimal generator for the CTMC induced by Δ
 - $\pi(\Delta)$ = the stationary distribution of the above CTMC
 - r = the vector collecting the reward rates at the tangible markings of the semi-Markov process

- Problem formulation
 \[
 \max_{\Delta} \eta(\Delta) = \pi(\Delta)^T \cdot r
 \]
 s.t.
 \[
 \pi(\Delta)^T Q(\Delta) = 0^T \\
 \pi(\Delta)^T \cdot 1 = 1.0 \\
 \Xi_i^T \cdot 1 = 1.0 \text{ for all } \nu_i \\
 \epsilon \leq \xi_{ij} \text{ for all } \nu_i \text{ and all } j \text{ in } \{1,...,k(i)\} \]
Complexity Considerations

• **Computational Challenge**
 – An explosion of \(v_i \) \(\Rightarrow \) An explosion of decision variables \(\xi_{ij} \)

• **Proposed Solution Methodology**
 – Restrict the problem formulation to policies \(\Delta \) admitting a more parsimonious representation
 • *Static* random switches: Defined only from the set of the enabled untimed transitions and not by the marking itself, i.e.,
 \[\Xi_i = \Xi_j \text{ if } \text{ the vanishing markings } v_i \text{ and } v_j \text{ activate the same set of untimed transitions} \]
 • The corresponding policy space \(\Delta \) contains all the “static-priority” policies
 • Hence, in the manufacturing setting, this scheme can optimize over all the possible combinations of the currently used heuristics at the different stations
 • Mathematically, the proposed restriction corresponds to a state space aggregation
 • Hence, we can refine the obtained solution through (partial) disaggregation
Example (cont.): static random switches and the induced state aggregation

11 static random switches:
- t_0 vs. t_2
- t_2 vs. t_6
- t_3 vs. t_5
- t_0 vs. t_5
- t_2 vs. t_5
- t_0 vs. t_3 vs. t_6
- t_0 vs. t_3 vs. t_5

27 \rightarrow 16
Random switch refinement

Eliminate "redundancies" in the connectivity of the tangible markings that might result from an effort to coordinate "non-conflicting" transitions.
Random switch refinement (cont.)

Eliminate "redundancies" in the connectivity of the tangible markings that might result from an effort to coordinate "non-conflicting" transitions.
A “simulation optimization” strategy (for the uniformized process)

• The modified scheduling problem is solved through stochastic approximation.
• Let
 – $P(\Xi) =$ the one-step transition probability matrix for the uniformized MC that corresponds to the policy Δ defined by the pricing of Ξ
 – $g(\Xi) =$ the corresponding relative value function

• A sensitivity formula from Markov reward process theory:
 \[
 \frac{\partial \eta(\Xi)}{\partial \xi} = \pi(\Xi)^T \cdot \frac{\partial}{\partial \xi} P(\Xi) \cdot g(\Xi)
 \]

• A gradient estimator:
 \[
 \frac{\partial \eta(\Xi)}{\partial \xi} = \frac{E\left[\sum_{k=u_v}^{u_v+1-1} (r(m_k) - \eta(\Xi)) \cdot \Lambda_k(\Xi) \right]}{E[u_{v+1} - u_v]}
 \]

• where:
 \[
 \Lambda_k(\Xi) = \sum_{j=u_{v(k)}}^{k} \frac{\partial}{\partial \xi} p(m_{j-1}, m_j; \Xi) \cdot \frac{p(m_{j-1}, m_j; \Xi)}{p(m_{j-1}, m_j; \Xi)}
 \]
Example (cont.): the converging behavior of the SA algorithm
Concluding Remarks

- The RAS modeling framework is a powerful abstraction capturing the complex resource allocation dynamics that take place in a very broad range of technological applications.

- These dynamics must be controlled for, both, logical correctness and performance; this suggests a natural decomposition to two major sub-problems.

- DES theory provides pertinent modeling frameworks for the representation of the dynamics addressed by each sub-problem.

- The analytical power of the standard DES models has been substantially augmented through their specialization in the RAS domain.

- In particular, the RAS logical control problem is very extensively researched, and the corresponding results can provide optimal solutions for most practical realizations of the considered RAS.
Remaining Challenges and Further Opportunities

• Strengthen the existing methodology for the solution of the performance control problem:
 – More “robust” SA algorithms w.r.t. the detection of improving directions and the applied termination criteria.
 – Development of efficient single-sample-path versions of the current SA algorithms for real-time computation / “learning” of the optimal policy.
 – Identification of new pertinent policy spaces.
• Consideration of additional (e.g., “fairness”) constraints on the RAS behavior.
• Exploration of distributed and/or decentralized approaches.
• Consideration of “resource capacity losses” due to failure or other disruptions.
• “Packaging” of the existing theory in a set of computational tools that will enable its effective implementation in various practical applications.
• Development / training of control engineers with the necessary background to effectively use and promote the presented developments.
Thank you!
The theoretical foundations of the presented framework

- Control Theory
- Theoretical Computer Science
- Discrete Event Systems
- Operations Research