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Background and motivation

The state estimation problem

Definition (State estimation problem)

Reconstruct the current state values of a dynamical system from the
knowledge of the current and past values of its external measurable
outputs and inputs.

If such a problem admits a solution, the system is said to be observable.

We denote:

◮ w an observation

◮ C(w) the set of states consistent with observation w , i.e., the
possible values of the system’s state after w has been observed
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Background and motivation

Some issues in DES estimation

Choice of suitable inputs:

◮ input events (in I/O automata)

◮ no inputs in autonomous systems

Choice of suitable outputs:

◮ event labels (e.g., Mealy automaton)

◮ state labels (e.g., Moore automaton) or measurements (sensors on
PN places)

◮ combination of both

”Events as outputs” is the most popular choice.

Estimate vs. enumeration:

◮ TDS: estimate χ(t) of the actual state x(t)

◮ DES: set of states C(w) consistent with the observation w
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Background and motivation

Two main approaches to the state estimation of DES

◮ Total observation: all events are observable (deterministic system)
but the initial state is (partially) unknown.

◮ Partial observation: not all events are observable (nondeterministic
system) but the initial state is usually known.

In the second case we may also be interested in reconstructing the set
S(w) of event sequences consistent with observation w (event
estimation).
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Background and motivation

Motivation for state estimation: supervisory control

State-feedback or event-feedback control scheme

   plant 

observer 

controller mask 

observed

word w

consistent  

states C (w)

Legal 

states 

L

   plant 

observer 

controller mask 

Legal 

sequences

L

observed

word w

consistent  

sequences S (w)

Alessandro Giua (UNICA & AMU) Diagnosis of PNs DCDS13 7 / 51



Background and motivation

Motivation for state estimation: diagnosis

Given a nominal model and a fault model (with unobservable fault events)
determine if a fault has occurred.

Alessandro Giua (UNICA & AMU) Diagnosis of PNs DCDS13 8 / 51



Background and motivation

Other motivations for state estimation

◮ Monitoring the evolution of a partially observed system

◮ Surveillance / intrusion detection

◮ Testing, e.g., determine final state after a test (synchronizing and
homing sequences)

◮ Opacity: current state is to remain ambiguous
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Background and motivation

Rest of the talk

1. A Petri net approach for state estimation with partial observation

2. A Petri net approach for diagnosis and diagnosability

Advantages wrt automata based approaches will be pointed out.
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PN state estimation with partial observation

Estimation problem with partial observation

Setting

◮ To each transition is associated a label (possibly the empty string ε)

◮ When a transition fires its label is observed

◮ Events associated to the empty string produce no observation and are
called silent or unobservable

◮ Events sharing the same label are called undistinguishable.

Here we focus on the problem of reconstructing the state consistent with a
given observation.
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PN state estimation with partial observation

Example

An AGV with obstacle.

◮ The AGV moves from left to right and viz. automatically

◮ Two contacts at end points generate a signal when the AGV touches
them

◮ An obstacle may block the path (there is no sensor to detect this)
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PN state estimation with partial observation

Observer design with automata

The observer is constructed by determinization: NFA → DFA.

◮ Each state of the DFA corresponds to a set of states of the NFA.

◮ The state reached on the DFA after the word w is observed gives the
set of states of the NFA consistent with w .
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PN state estimation with partial observation

The automata determinization procedure

Advantages

◮ Generality: works for any NFA: LNFA = LDFA = Lregex .

Drawbacks

◮ Each set C(w) must be exhaustively enumerated

◮ To compute C(w) need to compute C(w ′) for all prefixes w ′ � w

◮ If the NFA has n states, the DFA can have up to 2n states

◮ Does not allow to reconstruct the set S(w) of consistent sequences
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PN state estimation with partial observation

Can a determinization procedure be applied to Petri nets?

Unfortunately this is not possible in the general case. In fact:

Ldet ( Lλ

where

◮ Ldet: set of deterministic PN languages.

◮ Lλ: set of arbitrary PN languages. Nondeterminism is due both to
silent events and to undistinguishable events.
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PN state estimation with partial observation

Proposed approach

We propose a different technique:

◮ At each step the set of consistent markings is represented by the
integer solutions of a linear constraint set thus one needs not
exhaustively enumerate all consistent markings.

◮ The linear constraint set depends on some parameters (the so-called
basis markings) that can be recursively computed each time a new
event is observed.

◮ We pose some structural constraints but the same procedure works
for bounded and unbounded nets.
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PN state estimation with partial observation

Net structure

A Place/Transition net (P/T net) is a structure N = (P ,T ,Pre,Post)
where:

◮ P is a set of places represented by circles, |P| = m;

◮ T is a set of transitions represented by bars, |T| = n;

◮ Pre : P × T → N is the pre-incidence function that specifies the
arcs directed from places to transitions;

◮ Post : P × T → N is the post-incidence function that specifies the
arcs directed from transitions to places.
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PN state estimation with partial observation

Notation

◮ Labeling function L : T → E ∪ {ε} assigns to each transition t ∈ T

either a symbol from a given alphabet E or the empty string ε.

◮ Set of silent or unobservable transitions: Tu = {t ∈ T | L(t) = ε}.

◮ T̄−induced subnet of N: the new net N̄ obtained from N removing
all transitions in T \ T̄ .

Assumptions:

◮ the structure of the net N is known;

◮ the initial marking M0 is known;

◮ the net is labeled =⇒ when σ ∈ T ∗ fires we observe w = L(σ) ∈ E ∗;

◮ the Tu-induced subnet is acyclic.
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PN state estimation with partial observation

Example

a

1 t2
p2 p3p1

p6

4

3 p4

p5

Unobservable transitions are in blue.
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PN state estimation with partial observation

Consistent markings/sequences

Definition

Given a word w , the set of w-consistent markings is:

C(w) = {M ∈ Nm | (∃σ ∈ T ∗) : M0[σ〉M, L(σ) = w}.

and the set of w-consistent sequences is:

S(w) = {σ ∈ T ∗ | M0[σ〉, L(σ) = w}.

Alessandro Giua (UNICA & AMU) Diagnosis of PNs DCDS13 21 / 51



PN state estimation with partial observation

Basic notions

The solution we propose is based on the following notions:

◮ Justifications

◮ Basis markings

ADVANTAGE: no need to explore all reachability set but only the smaller
basis marking set.
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PN state estimation with partial observation

Justifications

Set of justifications of the observed word w ∈ L∗

J (w) = {(σo , σu), (σ
′
o , σ

′
u), . . .}

where in each couple

◮ sequence σo ∈ T ∗
o is such that L(σ) = w

◮ sequence σu ∈ T ∗
u (called justification) is a sequence of unobservable

transitions that must be interleaved with σo to produce a firable
sequence and whose firing vector π(σu) is minimal.

a

1 t2
p2 p3p1

p6

4

3 p4

p5

If a is observed J(a) = {(t2, ε1)}.
Note that also ε3 and ε4 may have
fired.
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PN state estimation with partial observation

Basis markings

For each couple (σo , σu) ∈ J (w), the marking

Mb = M0 + Cu · π(σu) + Co · π(σo)

i.e., the marking reached firing σo interleaved with the minimal
justification σu, is called basis marking and the firing vector π(σu) is called
its j-vector (or justification-vector).

M(w) is the set of pairs (basis marking - relative j-vector) that are
consistent with w ∈ L∗ and Mb(w) is the set of basis markings that are
consistent with w ∈ L∗.

a

1 t2
p2 p3p1 3 p4

p6

4

p5 If a is observed
M(a) = {([1 0 1 0 1 0]T , [1 0 0])}
where j = [ε1 ε3 ε4] = [1 0 0].
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PN state estimation with partial observation

Computing the set of consistent markings

Theorem

Let us consider a net system 〈N,M0〉 whose unobservable subnet is acyclic.

For any w ∈ L∗ it holds that

C(w) =
⋃

Mb∈Mb(w)

R(Nu,M
b)

=
⋃

Mb∈Mb(w)

{M ∈ Nm | (∃y ≥ ~0) M = Mb + Cu · y}.
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PN state estimation with partial observation

Recursive computation of M(w)

The set M(w) and Mb(w) can be recursively computed.

For bounded nets it can be done off-line computing a Basis Reachability
Graph (may be nondeterministic)

a

1 t2
p2 p3p1

p6

4

3 p4

p5

M
b

1

a, e1

e1 = ( 1) = [1 0 0] 

M
b

0 = [2 0 0 0 0 0]
T

M
b

1 = [1 0 1 0 1 0]
T

M
b

0 = [0 0 2 0 2 0]
T

M
b

2M
b

0

a, e1

M(ε) = {(Mb
0 , 0)} M(a) = {(Mb

1 , e1)} M(aa) = {(Mb
2 , e1 + e1)}.
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PN state estimation with partial observation

Summary

◮ Set of consistent markings needs not be enumerated but is
described by a constraint set in terms of the basis marking and
unobservable subnet reachability.

◮ The set of basis marking can be easily recursively computed.

◮ In the worst case the set of basis markings is equal to the
reachability set.

◮ There are nets where the size of the reachability graph is exponential
in some net parameters, while the set of basis marking is constant or
grows linearly.
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PN diagnosis

Main idea

We want to use the previous framework of estimation with partial
observation to solve a diagnosis problem.

The set of unobservable transitions is partitioned: Tu = Tf ∪ Treg .

◮ Tf : set of fault transitions
◮ Treg : set of regular transitions (unobservable but not fault)

The set of fault transitions can be partitioned into fault classes

Tf = T 1
f ∪ T 2

f ∪ . . . ∪ T r
f

Two problems:

◮ Diagnosis: given an observation w determine if the i -th fault has
occurred, i.e., if a transition in T i

f has fired.
◮ Diagnosability: determine if a given fault can be diagnosed in a fixed

number of steps.
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PN diagnosis

Diagnoser

A diagnoser is a function ∆ : L∗ × {T 1
f ,T

2
f , . . . ,T

r
f } → {0, 1, 2, 3}:

∆(w ,T i
f ) = 0 NO FAULT

⇒ The ith fault cannot have occurred because none of the
firing sequences consistent with the observation contains
transitions in T i

f .

∆(w ,T i
f ) = 1 POSSIBLE FAULT

⇒ The ith fault may have occurred but never while firing a
justification of w .

∆(w ,T i
f ) = 2 POSSIBLE FAULT

⇒ Some (but not all) justification of W contains some
transition in T i

f .

∆(w ,T i
f ) = 3 FAULT DETECTED

⇒ The ith fault has occurred because each justification of w
contains at least one transition in T i

f .
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PN diagnosis

Characterization of diagnosis states

Proposition: Consider an observed word w ∈ L∗.

∆(w ,T i
f ) ∈ {0, 1} iff ∀ (Mb, j) ∈ M(w) and ∀tf ∈ T i

f it holds j(tf ) = 0.

∆(w ,T i
f ) = 2 iff ∃ (Mb, j) ∈ M(w) and (Mb ′, j ′) ∈ M(w) such that:

(i) ∃tf ∈ T i
f such that j(tf ) > 0,

(ii) ∀tf ∈ T i
f , j

′(tf ) = 0.

∆(w ,T i
f ) = 3 iff ∀ (Mb, j) ∈ M(w) ∃tf ∈ T i

f such that j(tf ) > 0.
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PN diagnosis

Characterization of diagnosis states

Proposition: For a Petri net whose unobservable subnet is acyclic, let
w ∈ L∗ be an observed word : ∀ (Mb, j) ∈ M(w) it holds j(tf ) = 0.
Let us consider the constraint set

T (Mb) =



















Mb + Cu · z ≥ ~0,
∑

tf ∈T
i
f

z(tf ) > 0,

z ∈ Nnu .

◮ ∆(w ,T i
f ) = 0 if ∀ (Mb, j) ∈ M(w) the constraint set has no

admissible solution.

◮ ∆(w ,T i
f ) = 1 if ∃ (Mb, j) ∈ M(w) such that the constraint set has a

solution.
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PN diagnosis

Example

j =
[

j(ε4) j(ε5) j(ε6) j(ε7)
]

M0 = [1 0 0 0 0 0]T , w = ε

J (w) = {(ε, ε)}

Mb
0 = [1 0 0 0 0 0]T j =

[

0 0 0 0
]

=⇒ ∆(Tf , ε) = 0
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PN diagnosis

Example

j =
[

j(ε4) j(ε5) j(ε6) j(ε7)
]

Mb
0 = [1 0 0 0 0 0]T , w = a

J (w) = {(t1, ε)}

Mb
1 = [0 1 0 0 0 0]T j =

[

0 0 0 0
]

=⇒ ∆(Tf , a) = 1
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PN diagnosis

Example

a 7

b
4t1

t3

p2 p3p1

t2

a

p6

p4 p55

6

j =
[

j(ε4) j(ε5) j(ε6) j(ε7)
]

Mb
1 = [0 1 0 0 0 0]T , w = aa

J (w) = {(t1t1, ε4ε6ε7), (t1t2, ε4ε5)}

Mb
1 = [0 1 0 0 0 0]T j =

[

1 0 1 1
]

Mb
2 = [0 0 0 0 0 1]T j =

[

1 1 0 0
] =⇒ ∆(Tf , ab) = 2
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PN diagnosis

Example

j =
[

j(ε4) j(ε5) j(ε6) j(ε7)
]

Mb
2 = [0 0 0 0 0 1]T , w = aab

J (w) = {(t1t2t3, ε4ε5)}

Mb
2 = [0 0 0 0 0 1]T j =

[

1 1 0 0
]

=⇒ ∆(Tf , aab) = 3
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PN diagnosis

Bounded net systems

BOUNDED NET SYSTEMS =⇒ BASIS REACHABILITY GRAPH
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PN diagnosis

Basis Reachability Diagnoser

Definition: We define BRD as a deterministic graph where each node is
represented by:

◮ one or more triple (Mb, x , h), where M is a reachable basis marking,
x ∈ {0, 1}|Tf | is a row vector in which each entry assumes value equal
to 0 or 1 if C(Mb) is feasible or not, respectively, and h ∈ {N,F}|Tf |

is a row vector in which each entry is equal to N if reaching M from
M0 the fault has not occurred and equal to F otherwise;

◮ one tag ∆i that represents the diagnosis state of the node with
respect to the fault class i .

and each arc is labeled with a label l ∈ L.
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PN diagnosis

Example

The BRD can easily be built starting from BRG.

a a 
M

b
1, 1, N  1=2 

M
b
2, 0, F      

a

M
b
0, 0 , N    =0 M

b
1, 1, N    =1 b M

b
2, 0 , F =3 

b
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PN diagnosis

Final comments

◮ The state estimation approach previously proposed can be naturally
used as a building block for diagnosis

◮ Just a partial enumeration of the state space (basis markings) is
necessary

◮ The technique can be used on-line for bounded or unbounded nets
constructing the consistent set of basis markings on the fly.

◮ If the set of bounded markings is finite (this holds for bounded nets)
it may be convenient to construct off-line the basis reachability
diagnoser.

Alessandro Giua (UNICA & AMU) Diagnosis of PNs DCDS13 40 / 51



PN diagnosability
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PN diagnosability

Problem Statement for Diagnosability

A Petri net system 〈N,M0〉 is diagnosable if when any failure transition
occurs, its failure type is detected after the firing of a finite number of
transitions from its occurrence.

Example: A diagnosable system (left) and a non diagnosable one (right).

x0 x1
a

b

a b

x2 x3

a b

x0 x1
a

a

a a

x2 x3

a a

AIM: Given a net system 〈N,M0〉 we want to determine if the system is
diagnosable or not.

Alessandro Giua (UNICA & AMU) Diagnosis of PNs DCDS13 42 / 51



PN diagnosability

Modified Basis Reachability Graph

To deal with diagnosability of bounded nets the BRG does not contain
enough information.

If we are interested in diagnosability we need to construct a Modified Basis
Reachability Graph (MBRG) where fault transitions are treated as
observable transitions.
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PN diagnosability

Example

To = {t1, t2, t3} Tu = {ε4, ε5, ε6, ε7} Tf = {ε5}
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PN diagnosability

Features of the modified BRG

◮ The arcs are labeled either with observable transitions or with fault
transitions.

◮ |MBRG | ≥ |BRG |.

◮ We have presented a technique to determine the diagnosability of a
PN based on the analysis of the cycles of its modified basis
reachability diagnoser (MBRD), i.e., the diagnoser obtained by the
MBRG.
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PN diagnosability

An interesting general result for bounded systems

Jiroveanu and Boel1 have proved in a slightly different context a result
that also applies to our case.

Theorem

A Petri net is diagnosable if and only if its MBRG is a diagnosable

automaton.

Thus one just needs to construct the MBRG and may use automata based
approaches to test diagnosability.

1G. Jiroveanu, R.K. Boel, ”The Diagnosability of Petri Net Models Using Minimal

Explanations,” IEEE Trans. on Automatic Control, 2010.
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PN diagnosability

Diagnosability of unbounded nets

We have shown that testing diagnosability of a Petri net is a
decidable problem even if the net is unbounded2.

The method used to check decidability does not use efficient techniques
such as basis markings: it constructs a verifier net whose reachability
space (quadratic w.r.t. the system’s reachability space) must be
enumerated.

In the case of unbounded Petri nets in addition to the classical notion of
diagnosability it is also possible to define the stronger notion of
diagnosability in k steps: both properties are decidable.

2M.P. Cabasino, A. Giua, S. Lafortune, C. Seatzu, ”A new approach for diagnosability

analysis of Petri nets using verifier nets,” IEEE Trans. on Automatic Control, 2012.
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PN diagnosability

Summary

◮ The techniques for state estimation with partial observation can be
easily extended to solve a problem of diagnosis and of diagnosability.

◮ We need to extend the set of basis markings considering markings
reached by firing a fault transition.

◮ For bounded nets we have presented an approach for testing
diagnosability where the extended set of basis markings needs to be
explored instead of the complete reachability set.

◮ For unbounded nets diagnosability is also decidable but no efficient
approach is known.
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Conclusions

Conclusions

◮ The notion of state estimation and observer for DES’s is
meaningful and has practical motivations

◮ Petri nets are a good model for DES offering several
computational advantages wrt automata

◮ A Petri net approach based on state estimation under partial
observation founded on the notion of basis marking has been
discussed.

◮ The basis marking approach can be naturally extended to fault
diagnosis
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Conclusions
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