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What is a hybrid stochastic system? 
 

 Hybrid 
 Continuous / discrete 

 Most systems are of that kind 

 Few of them cannot be simplified as 
discrete (for dependability aspects) 

 Stochastic 
 Subject to random processes 

(failures, repairs…) 
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The need for studying them 

 Strong interactions between the 
continuous and discrete processes 
 Continuous models are not adapted 

 Discrete models are insufficient 

 High stakes  
 Safety (nuclear power plants, oil & gas…) 

 Money (electrical grid) 
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Electrical power is: 

generated 

transmitted 

distributed 

and sold! 
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Limits of discrete models 

 Discrete stochastic models are 
generally sufficient for generation 
and distribution 

 Sometimes, analysts are even 
satisfied with combinatorial models 

 But for transmission… 
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Black outs 

 Loss of power for a 
large number of 
customers 
 (>100000 ?) 

 

 Duration: 1h ? to 
several days 

 

 Spread: a middle 
sized town? to a 
whole interconnected 
grid 

 
Italy 

Europe from the sky 

28 September 2003 
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Black out stakes 

 Virtually no casualties until now, 
but 
 a black out => strong constraints on 

network components (economic stake) 
 electricity not sold – never recovered  
 the safety of nuclear power plants is 

weakened during the black out 



The grid: a very dynamic system 
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Load profiles 
in France 
around 
Christmas 
2011 

Generation 
from 
renewables 
Aug. 2012 
Germany  

30GW variation in a 
few hours! 
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Main mechanisms producing 
black outs 
 Initiator: rupture of production/consumption balance or 

loss of a transmission element, Then… 

 Loss of synchronism 
  Very quick, long distance effects   

 Tension collapse 
  Progressive, "local"  

Characteristics 
of black outs are 
very diverse 
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The grid is a Hybrid Stochastic system 

 System state characterized by 
discrete and continuous variables  
 The discrete part acts on the 

continuous one 
Topology change, failures => differential 

equations change 

 The continuous part acts on the 
discrete one 
 Protection thresholds  

 Failure rates depend on temperature 
(canicule effect), cables length depends on 
Joule effect 



Other examples 

 Level 2 PSA of a NPP 
 Evaluation of the probability of 

radioactive elements dissemination 

 Requires the modeling of the 
interaction between continuous 
physical processes and discrete events 
(failures, operator actions…) 

 Process control systems (chemical, 
oil…) 
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What is « dynamic reliability » ? 

 Models and calculation methods taking into 
account the bi-directional interaction 
between  
 discrete events causing sudden state changes 

 
and 

 continuous physical processes 

State vector of the system = (X, I)t, where : 

 X = vector of continuous variables 

 I = index of discrete state 
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Piecewise Deterministic 
Markov processes: PDMP 

A mathematical framework for 
hybrid stochastic systems 

 



The theoretical model in 
dynamic reliability 
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« Piecewise deterministic Markov process » 

(Davis 1984) 

The time t itself is often included in X: 

Allows to model non exponential distributions 

 Standard model (with continuous trajectories for continuous variables) 

Extended model: discontinuities are allowed for « continuous » 

variables when I changes 
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Trajectory of a PDMP 

I(t) 

X(t) 

The discrete part: whatever 

the number of discrete 

variables, the system states 

can be indexed on N  

The « continuous » part: 

X(t) is a vector of variables 

which evolve along 

continuous trajectories 

between jumps of I(t)  
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Single component with arbitrary 
failure and repair distributions 
 Failure rate l(t) and repair rate m(t) 
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Modeling various hypotheses on 
maintenance effects with PDMP 

 The age X1 of the component is not 
reset to 0 at each failure 

Marc Bouissou - DCDS 2013 18 

A
s 

b
ad

 a
s 

ol
d
 



A more physical example: 
heated room 

External temperature 

2).)((1.).(_ KTtTKPowertonheater
dt

dT
E

room 
T 

TE 

: _ ( ) 5 ( ( ) 13) 0.1
dT

Ex heater on t T t
dt

    

Heater:  

• on at Tmin, off at Tmax 

• subject to random failures (in operation 

and on demand*) and repairs 

• exponential distributions for times to 

failure (rate lambda) and times to repair 

(rate mu) 

 

(time in hours, temperatures in Celsius degrees) 

*This is a variant of the initial statement, to introduce the need for probabilistic instantaneous choices  
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An example of single (random) trajectory 

20 

A failure in 

operation of 

the heater 

occurred 

somewhere 

here  

And was repaired at  

that time 

A failure on 

demand of the 

heater occurred 

here  

Temperature 

of the room 

(°C) 

Time (h)  
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Statistics on such trajectories  
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time (h) 

T(°C) 

10000 random trajectories, 

calculation with EDF tools 

(case without failure on demand) 
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Dynamic reliability is a hard topic 

 Mixture of probabilities, 
differential equations 

 No convenient formalism 
to build models in practice 

 The only possible method 
to solve large problems is 
MCS and the use of MCS 
is not so obvious 

The two following parts are dedicated to: 
- MCS strategies 
- Modeling frameworks (tools) 
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Time handling 

2 categories of approaches: 

 Clock-based: update of the model at each 

clock tick  

Next-event technique: the model is only 

examined and updated when it is known 

that a state (or behavior) changes. Time 

moves from event to event.  
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First solving method :  
time discretization 

The simplest way to manage Monte 
Carlo simulation 



Principle of time discretization 

time 
0 

Clock ticks 

At clock tick i, perform the following calculations : 
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If one of the variables has hit a threshold, 

Change (X, I) as needed 

(Random value) 

(Deterministic value) 
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Advantages 

 Easy to understand: the markovian 
dynamic reliability model is 
explicitly represented 

 Easy to implement 
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Problems… 

 The probability that two random events 
happen in the same time interval is not 
zero 
 IS a problem if sequential behavior 

 Cpu time: many calculations of random 
numbers instead of… one for an event 
which is not influenced by physical 
variables 

 Non exponential distributions require: 
 An explicit function giving the hazard rate 
 Additional dimensions in X, corresponding to 

the starting date of random processes 
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Improvement 

time 
0   ti 

Event with an occurrence rate independent from physical 
variables 

• Saves many random numbers calculations 
• Avoids (in most cases) the problem of random events falling 
    in the same time interval 
• But requires an intermediary calculation for the state of 

the whole system with time step ’ 

’ 
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Second solving method :  
state space discretization 

  This amounts to having a 
variable time step 



Principle 
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Time before next change of Xd =min(ti) 

Xd = discretized version of X 

 

One can then perform a standard event driven simulation, each change 

of one of the continuous variables causing an « event » in the scheduler 

If the model is a Petri net there must be two timed transitions for 

each variable (to increment/decrement it) 
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What if the deterministic variables 
are not linear in time ? 

At each change of Xd, t must be re-evaluated 

xi
d 

d

d

kx

x
tkx

dt

dx 
Example: exponential evolution 

(exact solution:                                                 ) )1(
1

d

d

x

x
Ln

k
t




time 

),(

),(

IXg

x
t

IXg
dt

dX

i

i

d
i






Marc Bouissou - DCDS 2013 31 



Advantages/drawbacks 

 Advantages 
 Can be implemented with (nearly) standard 

discrete system simulation tools 
 Non exponential distributions easy to 

implement 
 Precision can be improved if analytical solution 

of differential equations known 
 Discretization can be chosen in order to put 

thresholds exactly « on » discrete values 

 Drawbacks 
 It is impossible to model phenomena such as 

the increase of a failure rate with 
temperature (approximation not mastered) 
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These two methods were 
compared in [1] 

[1] M. Bouissou, Comparison of two Monte Carlo 
schemes for simulating PDMP, MMR 2007 
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Third solving method:  
event driven simulation 

   



Principle 

 At each state « jump » (change of I, or 
discontinuity of X), the process initiates 
a new trajectory of the deterministic 
part 

 Competition in time between the fact 
that this deterministic part reaches a 
threshold and the random discrete 
events 

 The dates of random discrete events 
must be re-evaluated using the evolution 
of their occurrence rates under the 
hypothesis that the differential 
equations are unchanged 
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Time S of the next jump 
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Advantages/drawbacks 

 Advantages 
 No approximation, no choice of discretization 

step (except for the solution of diff. eq.) 
 Non exponential distributions easy to 

implement 
 Minimizes cpu time 

 Drawbacks 
 Hard to implement => usually requires ad-hoc 

programs => how not to be suspicious about the 
correctness of such programs? 
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Modeling tools 

 Looking for a user friendly 
tool that would implement 
the last MCS strategy 



How about user-friendly 
tools? 

Pr (X) = … 

Probabilistic land Deterministic land 
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Benchmarks 

 Benchmark conducted by EDF on a use 
case of middle complexity: the control 
system of the input flow of a steam 
generator in a NPP (APPRODYN project) 
 

 2 ESREL papers: Critical comparison of 
two user-friendly tools to study PDMP  
 2012: comparison of Vensim (det.) and KB3 

(prob.) 

 2013: comparison of Modelica (det.) and 
PyCATSHOO (prob.) 
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Steam generator control 

 40 pages use case description 

 Nominal behavior, equations of the 
water level controller 

 Transients due to startup and 
shutdown of the plant 

 State graphs of components, 
failure modes, failure and repair 
rates 

 Undesirable event: the level 
becomes too high or too low 
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Methods tried on this case 

 Hybrid stochastic automata, 
implementation via Scilab/Scicos 
 Only a simplified model could be built 

 Combinatorial explosion 

 PDMP: Simulink and Stateflow 
 Worked quite well, compositional 

approach 

 The most readable models of the 
benchmark 

 Too slow calculations 
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Methods tried on this case 

 Stochastic Petri nets: MOCA-RP 
 228 places, 281 transitions, 664 arcs 

and 81 variables, organized in 45 
"modules"  

 The continuous equations of the 
controller had to be replaced by 
discrete approximations 
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Conclusion: nothing really worked! 

And always that suspicion: are the models valid? 



The ESREL papers 

 Based on the "heated room" test 
case 

 The second paper makes a global 
synthesis about the 4 tested tools 

 Three of the tools are based on an 
object oriented modeling language 

 Vensim, a tool created for "system 
dynamics" is not flexible enough to 
allow creating reusable models 
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Test case resolution with 
the KB3 workbench 

 How to solve the problem 
 in 1 hour 



Principles of the KB3 workbench 

Graphical input 

of system models 

Figaro 0 

(textual model) 

Library (in Figaro 

language) 

Generic description 

    of components 

Standard fault tree 

processors: 

Risk-Spectrum, … 
Minimal cut sets 

Reliability, Availability 

Fault tree 

Monte-Carlo simulator: 

YAMS 
Most probable sequences 

Reliability, availability 

Mean values of numeric 

   variables… 

Sequences Generator: 

FIGSEQ 
Most probable sequences 

Reliability, MTTF 

Asymptotic availability 
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The kind of processes that 
can be described in Figaro 

I(t) 

X(t) 

Target Figaro model 

I(t) 

X(t) 

47 

Limitation: a small time step must be used 
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A simple KB for dynamic reliability: 
« hybrid » Petri nets 

 standard Petri nets 

 Boolean messages 

 Boolean functions on messages 

 Randomly distributed parameters 

 Continuous variables 

 Special behavior of timed 
transitions  

Includes: 

KB size (lines of FIGARO language): 

• Petri nets: 215 lines 

• Hybrid Petri nets: 405 lines 
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Heated room: model with the 
« Hybrid Petri net » KB 
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Any model built with 

this KB includes a clock 

(here: time between clock 

ticks = 1mn) 

dt

dT
The expression of 

is input here 
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New approaches 
developed at EDF 

• The PyCATSHOO tool 

• Modelica extensions 



PyCATSHOO: motivation and 
ambitions 

 

Motivation: A new EDF R&D tool aimed at overcoming 
the limitations of KB3 in a hybrid context 

In terms of required functionalities dealing with 
stochastic hybrid systems 

In terms of openness 

Ambitions 
To provide the basic components required to model pure 

discrete stochastic behavior: States, Transitions, 
probability distributions, etc. 

To provide user-friendly means to model PDMP 

To give access to a wide range of scientific computation 
tools 
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PyCATSHOO: principles 

)(mInvx 

triggeredguardxsourcem τττ τ  )(

_DCE_ 

),( 0

m

m xtx Φ

)(mInvx

),(),( 0 xmresetxm m 

_SDT_ 

)(0 xresetxm 

_BR_ 

52 

Automatically implements the 3rd MCS scheme 
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Resolution with Modelica 

 Modelica was originally designed 
for building/solving deterministic 
models 



Main features of Modelica tools* 

 Integrated tools:  
 GUI for model building  

 Integrated solver  

 Graphical outputs 

 Sensitivity analysis features ? 

 Variable time step 

 No room for aleatory concepts 

*Dymola, Simulation X, Open Modelica… 

See www.modelica.org 
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Modelica model 

equation  

  der(T)=  5*HeaterControl + 0.1*(Outside_Temperature - T) ; 

   
 

T 

HeaterControl 

Outside_Temperature 
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The heater 
algorithm  

when initial() then 

  F := seed;  

//each calculation of F will yield a pseudo random number in [0,1] 

end when; 

// Attention: the two following rules must not be merged in a single one! 

when initial() then   //calculating the first random working time 

    F := mod(a*F+c, m); 

    x := F / m; 

    X:= (-log(1-x))/lambda; 

end when; 

when  working then //random draw of the next working time 

    F := mod(a*F+c, m); 

    x := F / m; 

    X:= (-log(1-x))/lambda; 

end when; 

// X is the working time 

when working and (time - starttime_working) > X then 

    working := false; 

    starttime_notworking := time; 

end when; 

 

…. Similar instructions for repairs 
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// Input-output relation 

equation  

if working then 

  y =  u; 

 else 

    y =  0.; 

end if; 
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Conclusions on this experiment 

 In principle Modelica is able to solve the problem but 
 Model building is difficult, error prone 

 Models are  

 Hardly readable by humans 

 Unreadable by machines (except for simulation) 

57 

IF working  

MAY_HAPPEN failure  

    INDUCING  

         working FALSE 

    DIST EXP(lbda); 

when  working then 

    F := mod(a*F+c, m); 

    x := F / m; 

    X:= (-log(1-x))/lbda; 

end when; 

when working and (time -

 starttime_working) > X then 

    working := false; 

    starttime_notworking := time; 

end when; 

self.addTransition  ("failure", 

"working"  , "not_working",  

law = HCExpoPLaw 

(rate=lbda)) 

Modelica FIGARO 

PyCATSHOO 
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Modelica for PDMP 

 Already existing features (from 3.3) 

 State machines with hierarchy of states 
(concepts of D. Harel’s Statecharts) 

 Missing concepts 

 Probabilistic concepts*, i.e. : 
 For immediate transitions: branching probabilities (e.g. a 

component required to start may or may not start) 

 For delayed transitions: probability distribution of the 
delay (e.g. the time to failure of a component, exponentially 
distributed) 
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The change to be made is similar to the change from 

Petri nets to Stochastic Petri nets 

* Already available in FIGARO, AltaRica, PyCATSHOO 
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The MODRIO project 
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 Launched in Sept. 2012 by EDF 

 Aims: extend the use of Modelica 
models from pure design to 
 Proof of properties 

 Exploitation of systems  

 Dependability analysis 
Hybrid stochastic systems 

 Fault-tree and Bayesian network 
generation 

 



Conclusion 

 More and more needs for hybrid 
stochastic systems simulation 

 No user friendly tool available yet 
But 

 Extensions of Modelica tools 

 PyCATSHOO 

 Are both promising 
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