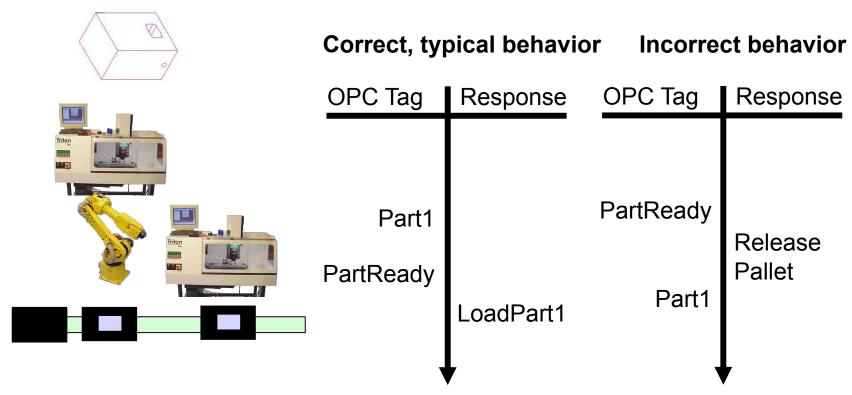
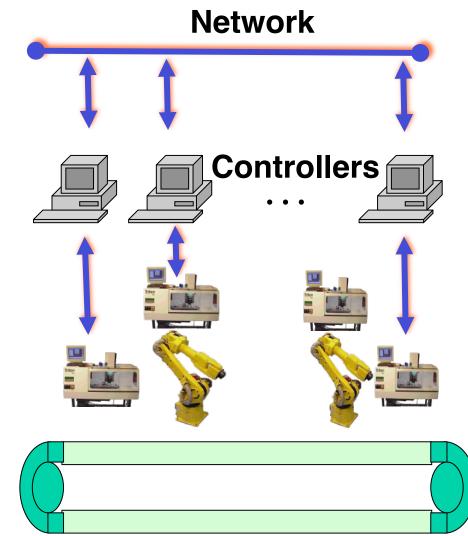
Anomaly detection in event-based manufacturing systems using model generation


Dawn Tilbury

Professor, Mechanical Engineering, University of Michigan Guest Professor, Automatic Control, Lund University

Outline


- Motivating example
- Anomaly detection method
- Application to industrial system
- Conclusions and future work

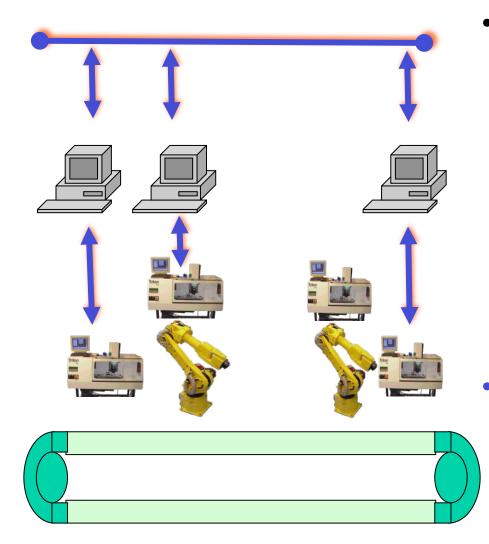
Motivating example

- No model of entire system's correct behavior
- Manual inspection to find the anomaly
 - a laborious, offline process

Manufacturing systems

Resource

- Robot, machine, conveyor, pallet ...
- Controller
 - machine control, systemlevel, PLC, …

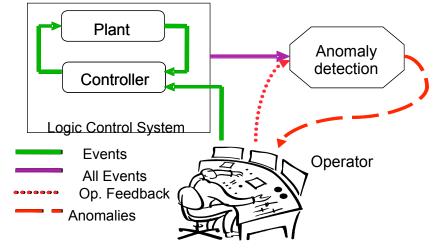

Communication

 Networks carry events between controllers

Process

- Set of disjoint events
- Use shared resources to accomplish a goal

Problem statement


- Given a manufacturing system with known resources and processes, and a record of events sent between controllers,
- Find anomalies in the event-based communication records

Outline

- Motivating example
- Anomaly detection method
 - Assumptions and Petri net formalism
 - Model generation
 - Model performance assessment
 - Anomaly detection
- Application to industrial system
- Conclusions and future work

Goal: Anomaly detection

- Assumptions:
 - No formal model
 - Resources are known
 - Processes are known
 - Events are recorded
 - Events associated with resources and processes

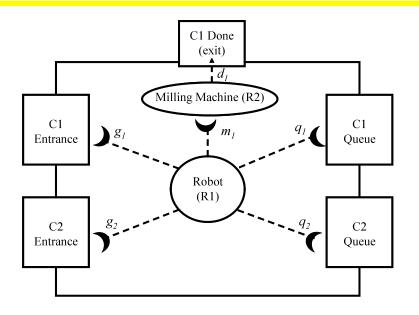
- Method:
 - Generate models based on training data
 - Detect anomaly by comparing trace to models
 - Advise the operator when anomaly occurs

Assumptions

- Known:
 - Resources and capacities
 - Robots
 - CNC machines
 - Pallets
 - Events that acquire & release resources
- Measurable:
 - Event logs
 - Communication between controllers (OPC tag changes)

• Unknown:

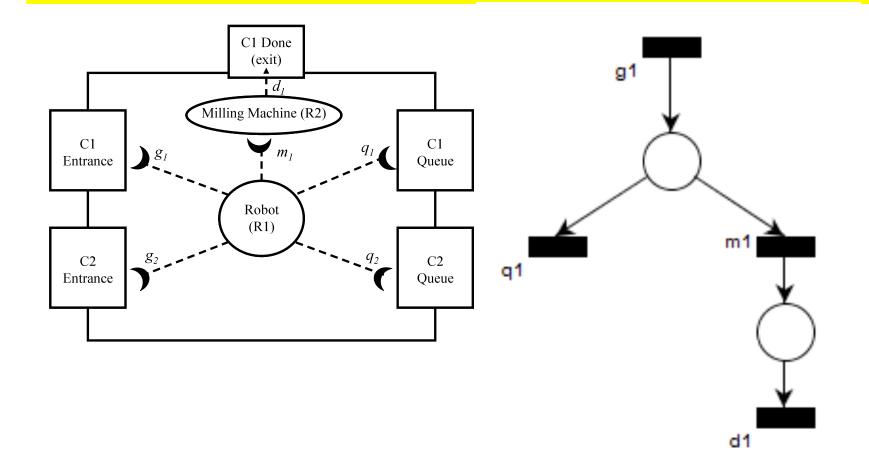
- Formal model of the system
 Could be constructed but is time-consuming and error prone
- Logic control code
 Written by different
 people at different
 times in different
 languages
- Correct event order Many different orders may be acceptable


Prior work on fault detection

Existing approaches	Our approach
 Machine-level faults 	 System-level faults
 Continuous data 	 Event-based data
 Require pre-existing formal model 	 No pre-existing formal model
 Require fault models 	 No model of faults
 Require system knowledge, e.g. max # of places in Petri net No decisions based on 	 No <i>a priori</i> limit on size of system model Readily-available system information
resource availability	included

SPSR = System of Processes that interact through Shared Resources

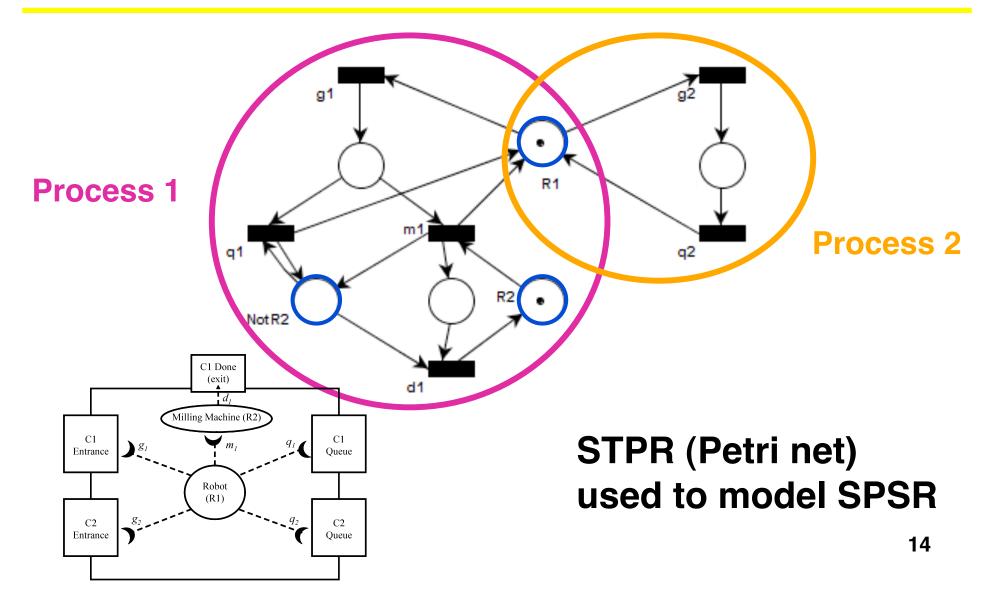
- Resource robot, CNC, pallet, etc.
 - Acquired and released by known events
 - Capacity of each resource is known
- Process = set of events and resources
 - Processes interact to accomplish a goal
 - Modular (separate, independent)
 - Interact only through shared resources


Example: Resources and events

	Acquire	Release
R1 (Robot)	g_1, g_2	m ₁ , q ₁ , q ₂
R2 (Machine)	m ₁	d ₁

- Process 1
 - Events g_1 , q_1 , m_1 , d_1
- Process 2
 - Events g_2 , q_2
- Resources
 - Robot; shared by both processes
 - Milling machine, only for process 1

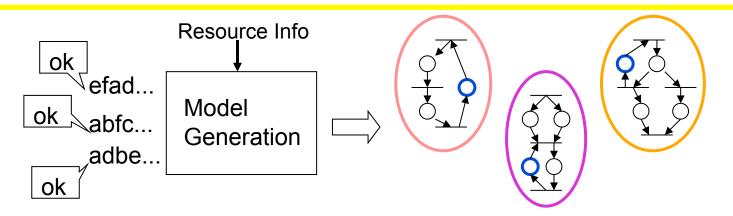
Transition Process (TP)



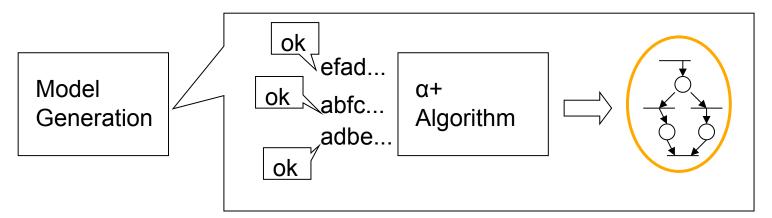
Transition Process with Resources

 Decision to mill or queue based on availability of mill (R2) g1 C1 Done (exit) . *d*, R1 Milling Machine (R2) C1 C1 m_1 g_{I} m Entrance Queue q1 Robot (R1) R2 C2 C2 NotR2 Entrance Queue

d1


Systems of Transition Processes with Resources (STPRs)

Outline


- Motivating example
- Anomaly detection method
 - Assumptions and Petri net formalism
 - Model generation
 - Model performance assessment
 - Anomaly detection
- Application to industrial system
- Conclusions and future work

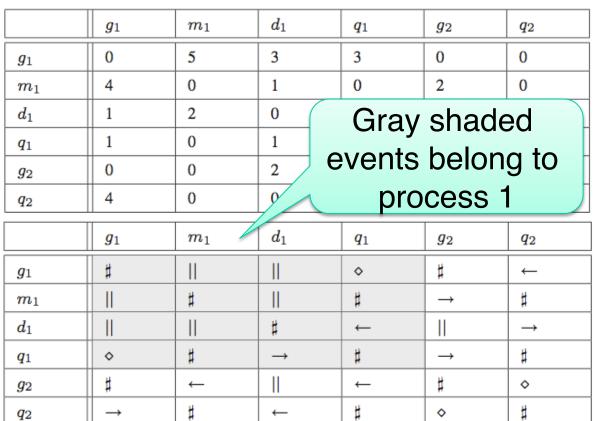
Model Generation

- Input: normal event streams, resource info
- Create models of each process
- Connect process models via shared resources
- Output: models of whole system

Create individual process models

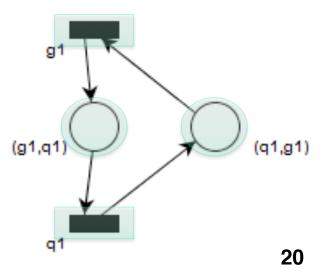
- Determine process-specific event relationships
- Create process models (α + algorithm)
 - Variations considering other process events
 - Add resource information to models

α + algorithm for process models


- Event ordering relationships
 - Causal if ab but not ba (\rightarrow)
 - Two-event loop if both aba and bab occur (\$)
 - Parallel if both ab and ba occur (II)
 - None if neither ab nor ba occurs (#)
- Creating places (events label transitions)
 - Causal: One place from a to b
 - Loop: Two places connecting a and b
 - Parallel or None: No places created

Event pair relationships

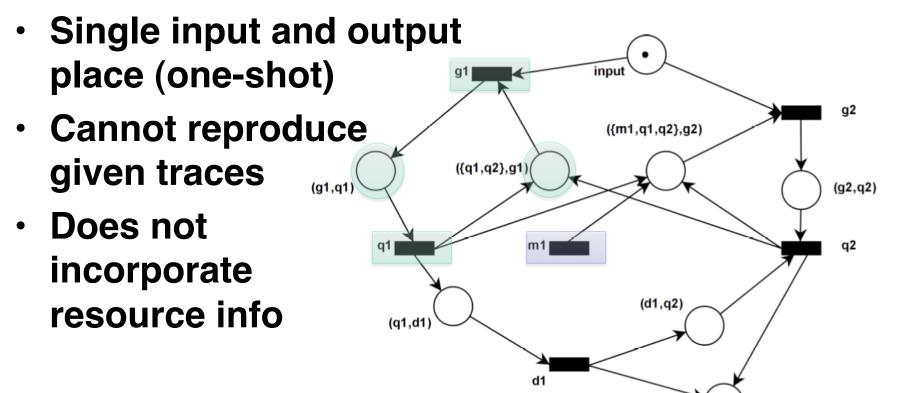
 $\sigma_1 = g_1 m_1 g_1 d_1 m_1 d_1 g_1 m_1 g_1 q_1 g_1 q_1 g_2 d_1 q_2 g_1 m_1 g_2 d_1 q_2$ $\sigma_2 = g_2 q_2 g_1 m_1 g_1 q_1 d_1 g_2 q_2 g_2 q_2 g_1 m_1 g_2 q_2 g_1 d_1 m_1 g_1 d_1$


 Number of occurrences of each pair

 Relationships between pairs

Example pair: 2-event loop

- $\sigma_1 = g_1 m_1 g_1 d_1 m_1 d_1 g_1 m_1 g_1 q_1 g_1 q_1 g_2 d_1 q_2 g_1 m_1 g_2 d_1 q_2$ $\sigma_2 = g_2 q_2 g_1 m_1 g_1 q_1 d_1 g_2 q_2 g_2 q_2 g_1 m_1 g_2 q_2 g_1 d_1 m_1 g_1 d_1$
- $g_1q_1g_1$ and $q_1g_1q_1$ both occur
- g₁ ◊ q₁ (two-event loop)
- One place to connect g₁ to q₁
 and another place to connect
 q₁ to g₁


Example pair: Parallel

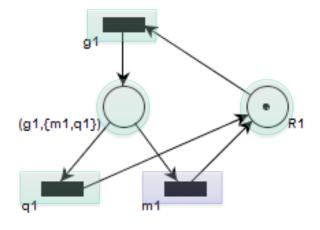
 $\sigma_1 = g_1 m_1 g_1 d_1 m_1 d_1 g_1 m_1 g_1 q_1 g_1 q_1 g_2 d_1 q_2 g_1 m_1 g_2 d_1 q_2$ $\sigma_2 = g_2 q_2 g_1 m_1 g_1 q_1 d_1 g_2 q_2 g_2 q_2 g_1 m_1 g_2 q_2 g_1 d_1 m_1 g_1 d_1$

- g_1m_1 Yes m_1g_1 Yes $g_1m_1g_1$ Yes $m_1g_1m_1$ No
- g₁ || m₁ (parallel)
- no places connecting

Output of α + algorithm

- Places created with \rightarrow and \diamond relationships
- Combining places where possible

22


output

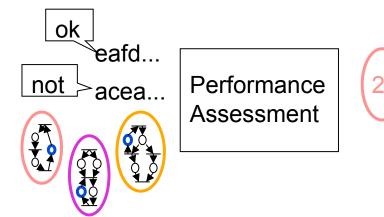
Model variations

- Using only events from process 1 creates a single model for process 1
- Alternate models are created by:
 - Considering events from other processes
 - Considering resource relationships
 - Considering implicit event relationships (e.g., due to interleavings)
- Many variations created for each process
 - Multiple models for each process
- Process models are combined by joining shared resource places

Example: Incorporating resources

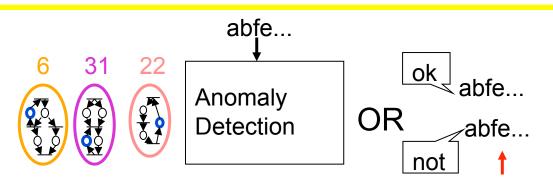
- g₁ || m₁ (no places connecting)
- Consider resource R1 (robot)
 - g₁ acquires R1
 - Both m₁, q₁ release R1

- Subtract resource relationship
- $g_1 \mid \mid m_1 \text{ remove } m_1 \rightarrow g_1 \text{ yields } g_1 \rightarrow m_1$
 - Add a place connecting g_1 to m_1
 - Combine places

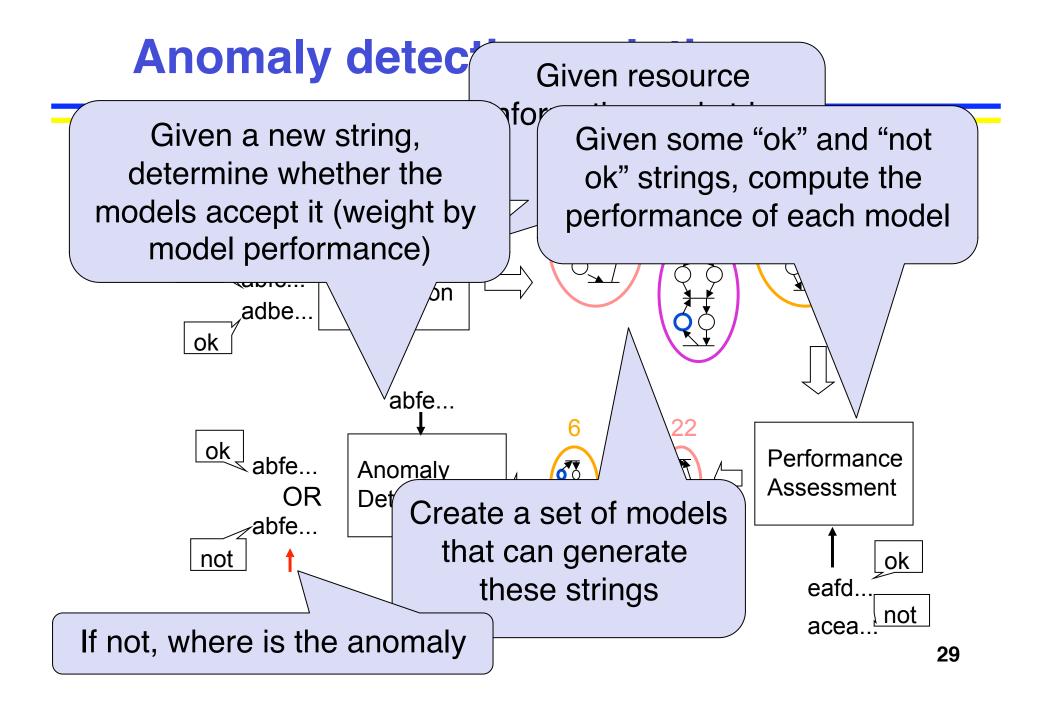

Theorem: Re-create "true" model

- If the underlying "true" model
 - is a TP with certain properties (safe, live, etc.)
 - and if the given event log contains all possible event pairs and two-event loops
- Then one of the TP models created by the model generation algorithm will be the "true" TP model.
- Implication: If the underlying "true" model is an STPR whose TPs and event log meet these requirements, then one of the created STPR models exactly matches the "true" model.

Outline

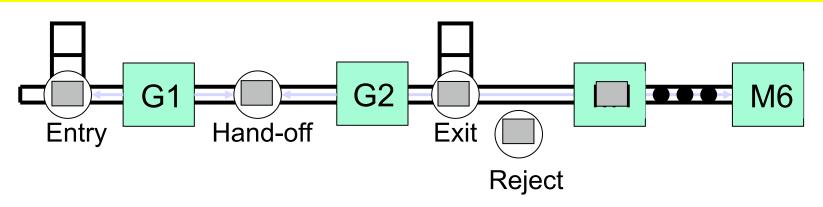

- Motivating example
- Anomaly detection method
 - Assumptions and Petri net formalism
 - Model generation
 - Model performance assessment
 - Anomaly detection
- Application to industrial system
- Conclusions and future work

Model Performance Assessment



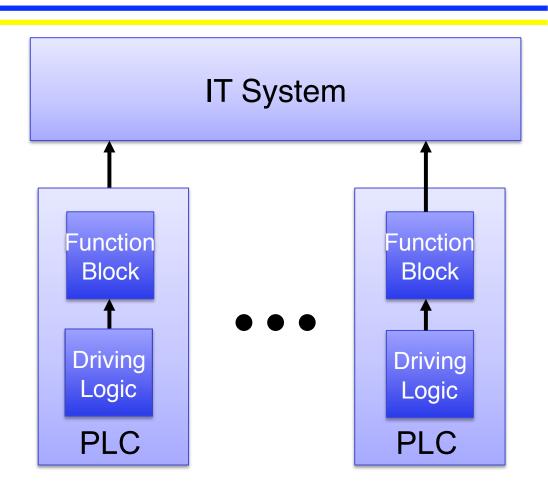
- Input: models, labeled event streams
- Assess model performance based on labeled event streams
 - Increase performance by 1 if correct
 - Decrease performance by 1 if incorrect
- Output: performance of models

Anomaly Detection


- Input: models with their performances, unlabeled event stream
- Anomaly detection
 - Determine whether models allow stream
 - Performance-weighted majority voting to decide whether anomaly in stream
- Output: whether anomaly in stream, and if so, where first detected

Outline

- Motivating example
- Anomaly detection method
- Application to industrial system
- Conclusions and future work


Machining Cell: Physical Set-Up

- Problem: G2 will have raw parts and at least one CNC available, but G2 incorrectly waits
- Resources:
 - gantries, Machines (CNC)
- Processes:
 - one per CNC, one for gantries

Data collection set-up

- Data from each machine & gantry
 - Bits include: Cycle
 End, Good/Bad
 Cycle, Wait Aux,
 Blocked, and
 Starved
 - PLC message generated each time particular bit changes occur

Approx. 11,000
 parts worth of data (270,000 PLC messages) ³²

Application to industry data

- What we thought we would get:
 - Well-defined strings of events
 - Events that acquire/release resources recorded
 - Unique mapping of PLC bits to events
 - Many strings, starting from the initial state, labeled as "good" or "bad

- What we got:
 - Not every event triggers a message
 → multi-bit change (order is uncertain)
 - Not all resource events captured in data collection
 - Some bits used for multiple purposes
 - One huge Excel file with no defined "beginning"

Identified Inconsistencies

	Academic Assumptions	Industry Realities
1	Resource events available	Some events filtered in data collection
2	String of ordered events	Multiple bit changes per message possible
3	Consistent bit- meaning mapping	Inconsistent bit- meaning mapping
4	Event streams start in initial state	System runs continuously
5	Separate, labeled streams	Continuous, unlabeled stream

1) Acquire/Release Resources

- Events that acquire and release resources are required for model-building
- Not all such events were recorded in the data collection system
- Potential solution: proxy events
 - Example: gantry picks up raw parts
 - Proxy: gantry begins unload/load CNC
 - Problem: Do not know when gantry is waiting
- Actual solution: Industry changed data collection system to record these events

2) String of Ordered Events

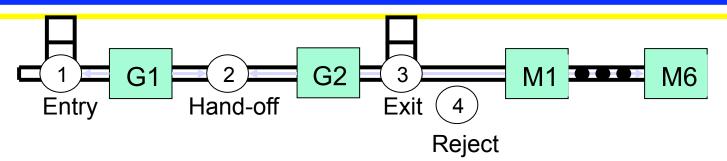
- Ordering of events not known; multiple bit changes (MBC) between PLC messages
- Possible causes of MBC
 - Not all bit changes cause PLC messages
 - Multiple bits can change within one PLC scan
- Potential solution: Treat each MBC as unique event
 - Approximately 1/3 of messages are MBC
 - MBCs account for > 5/6 unique events
- Actual solution: Split each MBC into sequence of single events

3) Consistent bit mapping

- Design documents define meaning of bits
- Implementation of PLC programming may result in slightly different use of bits
- Examples (occasional, inconsistent)
 - Cycle End bit pulsed high twice in a row
 - Wait Aux used for other other purposes besides machine interaction
- Potential solution: change logic to be consistent with design docs
- Actual solution: some logic changes, also pre-processed data for known issues

4) Initial State

- System is running continuously, rarely returns to "initial" state
- Problem: given event stream and STPR model, determine whether there exists a sequence of states in the model such that event stream could have occurred
- Solution: Define a necessary condition
 - Lower bound based on events in stream
 - Upper bound based on resource conservation
 - If lower bound < upper bound, stream is possible


5) Separate Labeled Streams

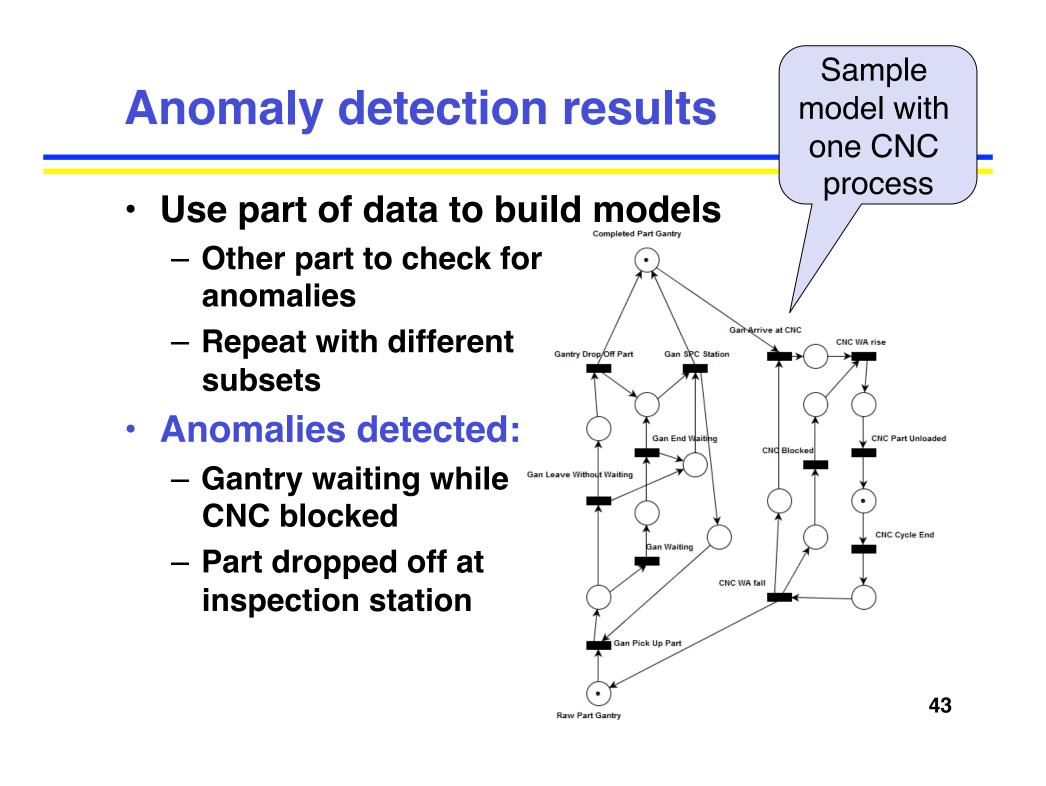
- Labeled streams needed
 - Normal to create models
 - Normal & anomalous to assess model performance
- Potential solution: System expert adds labels to streams
- Actual solution: Algorithm to split and label streams
 - Split data into pre-set size streams
 - Label streams based on conditions on events that are know to be associated with problem(s)

Inconsistencies & Resolutions

	Academic Assumptions	Industry Realities	Resolution
1	Resource events available	Some events filtered in data collection	I: Logic changed
2	String of ordered events	Multiple bit changes per message possible	A : Heuristic decision algorithm
3	Consistent bit- meaning mapping	Inconsistent bit- meaning mapping	I, A: Logic changed, pre-process data
4	Event streams start in initial state	System runs continuously	A : Nec. condition to create stream
5	Separate, labeled streams	Continuous, unlabeled stream	A : Splitting, labeling algorithm 40

Machining cell: Data selection

- 8 PLCs each report 40 words (x16 bits) data
 - Appropriate events (bit rise/fall) must be chosen


Resource	Events	Resource	Events
Gantry	Start waiting	CNCi	Blocked
	End waiting		Wait Aux
	Leave w/o waiting		Part not present
	Pick up raw part		Cycle end
	Part at inspection		
	Part at exit		
	Arrive at CNCi		

41

Building model from data

- One process for gantry, one for each CNC
- Exclude sections of data when gantry or CNC in "fault" state
- Add CNCs Ready resource as combination of all CNCs

Resources	Acquire	Release
Gantry G1	Pick up raw part	CNC wait aux fall
Gantry G2	Arrive at CNCi	Part at exit; inspection
Mi (CNCi)	CNC cycle end rise	CNC part unload
CNCs Ready	Gantry end waiting	CNC blocked

h	Gantry waiting: word 19 bit 9 is high											Word 18 bits 8-10 give the CNC ID								
				-	_					7									G	antry →
10/18/2010	13:41:03	6028	10	4030	0	0	1	217	$\langle \ \rangle$		100	3	0	0	0	0				-
	13:41:09	6029	10	4034	0	0	1	217			00	3	0	0	0	0	0			CNC3
10/18/2010	13:41:43	6030	10	4034	0	0	1	217	60			3	0	0	0	-	768	0	2643	0 0 0 0 808
10/18/2010	13:41:44	6031	10	4030	0	0	1	217	607	```	\backslash	7	0	0	0	0	0	0	\mathbf{C}	
	13:41:48	6032	10	4034	0	0	1	217	607	\land			0	0	0	0	256	\leq	G	antry →
10/18/2010	13:41:50	6033	10	4030	0	0	1	217	607	23	Ì		A	0	0	_	256			
10/18/2010	13:41:54	6034	14	4030	0	0	1	217	607	255		3		0	0	0	0			CNC1
10/18/2010	13:41:56	6035	14	4030	0	0	1	217	607	2552		V		A	0	0	256	0	2643	0 0 0 0 780
10/18/2010	13:42:03	6036	14	4030	0	0	1	217	607	2552	1	7	0		0	0	0	0	2643	0 0 0 0 772
10/18/2010	13:42:08	6037	24	4030	0	318	1	218	607	2553	24		0	0		48		17416	2643	0 0 0 0 -31993
	13:42:12	6038	10	4030	0	0	1	218	607	2553	200		0	0	04	0	1	17928	2643	6 0 0 0 779
10/18/2010	13:42:12	6039	10	4032	0	0	1	218	607	2553	2000	λ.	0	0	0			17928	2643	6 0 0 0 843
10/18/2010	13:42:13	6040	10	4036	0	0	1	218	607	2553	2000	\uparrow		0	0	0	1 1	17928	2643	6 0 0 0 891
10/18/2010	13:42:15	6041	10	4034	0	0	1	218	607	2553	2000	3	7	0	0	0		51	<u> </u>	
10/18/2010	13:42:35	6042	10	4034	0	0	1	218	607	2553	2000	3	\backslash	0	0	0	0		Gá	antry 🔶 🕴
10/18/2010	13:42:37	6043	10	4030	0	0	1	218	607	2553	2000	3	\Box	Д	0	0	0			- H
10/18/2010	13:42:42	6044	10	4034	0	0	1	218	607	2553	2000	3	0	1	0	0	0	7		CNC2
10/18/2010	13:42:52	6045	10	4034	0	0	1	218	607	2553	2000	3	0	Ν	0	0	512	0	2643	0 0 0 808
10/18/2010	13:42:56	6046	10	4030	0	0	1	218	607	2553	2000	3	0	0	0	0	512	0	2643	0 0 0 0 777
10/18/2010	13:43:00	6047	14	4030	0	0	1	218	607	2553	2000	3	0	0	9	0	0	0	2643	0 0 0 0 780
10/18/2010	13:43:02	6048	14	4030	0	0	1	218	607	2553	2000	3	0	0		0	512	0	2643	0 0 0 0 780
10/18/2010	13:43:10	6049	14	4030	0	0	1	218	607	2553	2000	3	0	0	9	0	0	0	2643	0 0 0 0 772
10/18/2010	13:43:13	6050	14	4030	0	0	1	218	607	2553	2000	3	0	0	0	0	0	0	0	0 0 0 0 772
10/18/2010	13:43:17	6051	24	4030	0	289	1	219	607	2554	2000	3	0	0	0	48		1741		
10/18/2010	13:43:21	6052	10	4032	0	0	1	219	607	2554	2000	3	0	0	0	0		174:	Ga	antry 🔿 🛛 🛛
10/18/2010	13:43:21	6053	10	4036	0	0	1	219	607	2554	2000	3	0	0	0	0	5	174		antry → CNC3
10/18/2010	13:43:24	6054	10	4034	0	0	1	219	607	2554	2000	3	0	0	0	0	0			
10/18/2010	13:43:27	6055	10	4030	0	0	1	219	607	2554	2000	3	0	0	0	0	0	0	0	0 0 0 0 792
10/18/2010	13:43:32	6056	10	4034	0	0	1	219	607	2554	2000	3	0	0	0	0	768	0	0	0 0 0 0 44

Outline

- Motivating example
- Anomaly detection method
- Application to industrial system
- Conclusions and future work

Conclusions & Future Work

- Anomaly detection in event-based systems without a formal model
 - Information on resources, processes & events
- Multiple process models built to cope with uncertainty about true behavior of system
 - Number of "whole" models can be quite large
 - Maintaining modularity through performance assessment phase could reduce complexity
- Application to off-line data
 - On-line detection could be implemented
 - On-line model building could consider and evaluate multiple different sets of events

Acknowledgements

 NSF Engineering Research Center for Reconfigurable Manufacturing Systems at the University of Michigan

- Prof. Yoram Koren, Director

- Lindsay Allen, former PhD student
- John Broderick, MS student
- Industry partners