
Anomaly detection in event-based
manufacturing systems using

model generation

Dawn Tilbury

Professor, Mechanical Engineering, University of Michigan

Guest Professor, Automatic Control, Lund University

2

Outline

•  Motivating example

•  Anomaly detection method

•  Application to industrial system

•  Conclusions and future work

Motivating example

3

s1

Part1

PartReady
Release
Pallet

LoadPart1 Part1

PartReady

Correct, typical behavior Incorrect behavior

•  No model of entire systemʼs correct behavior

•  Manual inspection to find the anomaly

•  a laborious, offline process

Response OPC Tag Response OPC Tag

Manufacturing systems

•  Resource

–  Robot, machine, conveyor,

pallet …

•  Controller

–  machine control, system-
level, PLC, …

•  Communication

–  Networks carry events

between controllers

•  Process

–  Set of disjoint events

–  Use shared resources to

accomplish a goal

Network

… Controllers

4

Problem statement

•  Given a
manufacturing
system with known
resources and
processes, and a
record of events
sent between
controllers,

•  Find anomalies in
the event-based
communication
records
 5

6

Outline

•  Motivating example

•  Anomaly detection method

–  Assumptions and Petri net formalism

–  Model generation

–  Model performance assessment

–  Anomaly detection

•  Application to industrial system

•  Conclusions and future work

7

Goal: Anomaly detection

•  Assumptions:

–  No formal model

–  Resources are known

–  Processes are known

–  Events are recorded

•  Events associated with
resources and
processes

•  Method:

-  Generate models based on training data

-  Detect anomaly by comparing trace to models

-  Advise the operator when anomaly occurs

Plant
Plant

Logic Control System

Fault

diagnosis

Anomaly

detection

Operator

Controller
Controller

All Events

Events

Op. Feedback

Anomalies

Assumptions

•  Known:

–  Resources and

capacities

•  Robots

•  CNC machines

•  Pallets

–  Events that acquire
& release resources

•  Measurable:

–  Event logs

•  Communication
between controllers
(OPC tag changes)

•  Unknown:

–  Formal model of

the system 
Could be constructed
but is time-consuming
and error prone

–  Logic control code 
Written by different
people at different
times in different
languages

–  Correct event order 
Many different orders
may be acceptable

8

Prior work on fault detection

Our approach

•  System-level faults

•  Event-based data

•  No pre-existing formal

model

•  No model of faults

•  No a priori limit on size

of system model

•  Readily-available

system information
included

Existing approaches

•  Machine-level faults

•  Continuous data

•  Require pre-existing

formal model

•  Require fault models

•  Require system

knowledge, e.g. max #
of places in Petri net

•  No decisions based on
resource availability

9

SPSR = System of Processes that
interact through Shared Resources

•  Resource – robot, CNC, pallet, etc.

–  Acquired and released by known events

–  Capacity of each resource is known

•  Process = set of events and resources

–  Processes interact to accomplish a goal

–  Modular (separate, independent)

–  Interact only through shared resources

10

Example: Resources and events

Acquire
 Release

R1 (Robot)
 g1, g2
 m1, q1, q2

R2 (Machine)
 m1
 d1

•  Process 1

–  Events g1, q1, m1, d1

•  Process 2

–  Events g2, q2

•  Resources

–  Robot; shared by

both processes

–  Milling machine,

only for process 1

11

Transition Process (TP)

12

Transition Process with Resources

•  Decision to mill or queue based on
availability of mill (R2)

13

Systems of Transition Processes
with Resources (STPRs)

Process 1

Process 2

STPR (Petri net)
used to model SPSR

14

15

Outline

•  Motivating example

•  Anomaly detection method

–  Assumptions and Petri net formalism

–  Model generation

–  Model performance assessment

–  Anomaly detection

•  Application to industrial system

•  Conclusions and future work

Model Generation

•  Input: normal event streams, resource info

•  Create models of each process

•  Connect process models via shared

resources

•  Output: models of whole system

Model
Generation

adbe...

efad...
abfc...

ok

ok

ok

Resource Info

16

Create individual process models

•  Determine process-specific event
relationships

•  Create process models (α+ algorithm)

–  Variations considering other process events

–  Add resource information to models

17

α+
Algorithm

adbe...

efad...
abfc...

ok

ok

ok Model
Generation

α+ algorithm for process models

•  Event ordering relationships

–  Causal if ab but not ba ()

–  Two-event loop if both aba and bab occur (◊)

–  Parallel if both ab and ba occur (||)

–  None if neither ab nor ba occurs (#)

•  Creating places (events label transitions)

–  Causal: One place from a to b

–  Loop: Two places connecting a and b

–  Parallel or None: No places created

18

Event pair relationships

19

•  Number of
occurrences
of each pair

•  Relationships
between pairs

Gray shaded
events belong to

process 1

σ1= g1m1g1d1m1d1g1m1g1q1g1q1g2d1q2g1m1g2d1q2 
σ2= g2q2g1m1g1q1d1g2q2g2q2g1m1g2q2g1d1m1g1d1 

Example pair: 2-event loop

σ1= g1m1g1d1m1d1g1m1g1q1g1q1g2d1q2g1m1g2d1q2 
σ2= g2q2g1m1g1q1d1g2q2g2q2g1m1g2q2g1d1m1g1d1 

•  g1q1g1 and q1g1q1 both occur 
•  g1 ◊ q1 (two‐event loop) 
•  One place to connect g1 to q1 
 and another place to connect 

 q1 to g1  
20

Example pair: Parallel

σ1= g1m1g1d1m1d1g1m1g1q1g1q1g2d1q2g1m1g2d1q2 
σ2= g2q2g1m1g1q1d1g2q2g2q2g1m1g2q2g1d1m1g1d1 

•  g1m1 Yes  m1g1 Yes   g1m1g1 Yes  m1g1m1 No 

•  g1 || m1 (parallel) 

•  no places connecBng 

21

Output of α+ algorithm

•  Places created with  and ◊ relationships

•  Combining places where possible

•  Single input and output 

place (one-shot)

•  Cannot reproduce 

given traces

•  Does not  

incorporate  
resource info 

22

Model variations

•  Using only events from process 1 creates
a single model for process 1

•  Alternate models are created by:

–  Considering events from other processes

–  Considering resource relationships

–  Considering implicit event relationships (e.g.,

due to interleavings)

•  Many variations created for each process

–  Multiple models for each process

•  Process models are combined by joining

shared resource places

23

Example: Incorporating resources

•  g1 || m1 (no places connecBng) 
•  Consider resource R1 (robot) 
-   g1 acquires R1 
- Both m1, q1 release R1 

- Subtract resource relaBonship 
•  g1 || m1 remove m1g1  yields g1  m1 

- Add a place connecBng g1 to m1  

- Combine places 
24

Theorem: Re-create “true” model

•  If the underlying “true” model

–  is a TP with certain properties (safe, live, etc.)

–  and if the given event log contains all possible

event pairs and two-event loops

•  Then one of the TP models created by the

model generation algorithm will be the
“true” TP model.

•  Implication: If the underlying “true” model
is an STPR whose TPs and event log meet
these requirements, then one of the
created STPR models exactly matches the
“true” model.
 25

26

Outline

•  Motivating example

•  Anomaly detection method

–  Assumptions and Petri net formalism

–  Model generation

–  Model performance assessment

–  Anomaly detection

•  Application to industrial system

•  Conclusions and future work

Model Performance Assessment

•  Input: models, labeled event streams

•  Assess model performance based on

labeled event streams

–  Increase performance by 1 if correct

–  Decrease performance by 1 if incorrect

•  Output: performance of models

Performance
Assessment

eafd...
acea...

ok

not 22

31

6

27

Anomaly Detection

•  Input: models with their performances,
unlabeled event stream

•  Anomaly detection

–  Determine whether models allow stream

–  Performance-weighted majority voting to

decide whether anomaly in stream

•  Output: whether anomaly in stream, and if

so, where first detected

Anomaly
Detection

abfe...
22 31 6 ok abfe...

abfe...
not

OR

28

29

Anomaly detection solution

Model
Generation

adbe...

efad...
abfc...

ok

ok

ok

Resource
Info

eafd...

Performance
Assessment

acea...

ok

not

22 31 6

Anomaly
Detection

abfe...

ok abfe...

abfe...
not

OR

Given resource
information and strings

of “ok” events

Create a set of models
that can generate

these strings

Given some “ok” and “not
ok” strings, compute the

performance of each model

Given a new string,
determine whether the

models accept it (weight by
model performance)

If not, where is the anomaly

30

Outline

•  Motivating example

•  Anomaly detection method

•  Application to industrial system

•  Conclusions and future work

Machining Cell: Physical Set-Up

•  Problem: G2 will have raw parts and at least
one CNC available, but G2 incorrectly waits

•  Resources:

–  gantries, Machines (CNC)

•  Processes:

–  one per CNC, one for gantries

G1 G2 M1 M6 2 3

4

1

Entry Hand-off

Reject

Exit

31

Data collection set-up

•  Data from each
machine & gantry

–  Bits include: Cycle

End, Good/Bad
Cycle, Wait Aux,
Blocked, and
Starved

–  PLC message
generated each
time particular bit
changes occur

•  Approx. 11,000
parts worth of data
 32

IT System

PLC

Driving

Logic

Function 
Block

PLC

Driving
logic

Function 
Block

Driving 
Logic

(270,000 PLC messages)

Application to industry data

•  What we thought
we would get:

–  Well-defined

strings of events

–  Events that

acquire/release
resources recorded

–  Unique mapping of
PLC bits to events

–  Many strings,
starting from the
initial state, labeled
as “good” or “bad

•  What we got:

–  Not every event

triggers a message
 multi-bit change
(order is uncertain)

–  Not all resource
events captured in
data collection

–  Some bits used for
multiple purposes

–  One huge Excel file
with no defined
“beginning”
 33

Identified Inconsistencies

Academic 
AssumpBons 

Industry RealiBes 

1  Resource events 
available 

Some events filtered 
in data collecBon 

2  String of ordered 
events 

MulBple bit changes 
per message possible 

3  Consistent bit‐
meaning mapping 

Inconsistent bit‐
meaning mapping 

4  Event streams start 
in iniBal state 

System runs 
conBnuously 

5  Separate, labeled 
streams 

ConBnuous, unlabeled 
stream  34

1) Acquire/Release Resources 

•  Events that acquire and release resources
are required for model-building

•  Not all such events were recorded in the
data collection system

•  Potential solution: proxy events

–  Example: gantry picks up raw parts

•  Proxy: gantry begins unload/load CNC

•  Problem: Do not know when gantry is waiting

•  Actual solution: Industry changed data
collection system to record these events

35

2) String of Ordered Events 

•  Ordering of events not known; multiple bit
changes (MBC) between PLC messages

•  Possible causes of MBC

–  Not all bit changes cause PLC messages

–  Multiple bits can change within one PLC scan

•  Potential solution: Treat each MBC as
unique event

–  Approximately 1/3 of messages are MBC

–  MBCs account for > 5/6 unique events

•  Actual solution: Split each MBC into
sequence of single events

36

3) Consistent bit mapping

•  Design documents define meaning of bits

•  Implementation of PLC programming may

result in slightly different use of bits

•  Examples (occasional, inconsistent)

–  Cycle End bit pulsed high twice in a row

–  Wait Aux used for other other purposes

besides machine interaction

•  Potential solution: change logic to be

consistent with design docs

•  Actual solution: some logic changes, also

pre-processed data for known issues

37

4) Initial State

•  System is running continuously, rarely
returns to “initial” state

•  Problem: given event stream and STPR
model, determine whether there exists a
sequence of states in the model such that
event stream could have occurred

•  Solution: Define a necessary condition

–  Lower bound based on events in stream

–  Upper bound based on resource conservation

–  If lower bound < upper bound, stream is

possible

38

5) Separate Labeled Streams

•  Labeled streams needed

–  Normal to create models

–  Normal & anomalous to assess model

performance

•  Potential solution: System expert adds

labels to streams

•  Actual solution: Algorithm to split and

label streams

–  Split data into pre-set size streams

–  Label streams based on conditions on events

that are know to be associated with problem(s)

39

Inconsistencies & Resolutions

Academic 
AssumpBons 

Industry RealiBes  ResoluBon 

1  Resource events 
available 

Some events filtered 
in data collecBon 

I: Logic changed 

2  String of ordered 
events 

MulBple bit changes 
per message possible 

A: HeurisBc 
decision algorithm 

3  Consistent bit‐
meaning mapping 

Inconsistent bit‐
meaning mapping 

I, A: Logic changed, 
pre‐process data 

4  Event streams start 
in iniBal state 

System runs 
conBnuously 

A: Nec. condiBon to 
create stream 

5  Separate, labeled 
streams 

ConBnuous, unlabeled 
stream 

A: SpliWng, labeling 
algorithm  40

Machining cell: Data selection

•  8 PLCs each report 40 words (x16 bits) data

–  Appropriate events (bit rise/fall) must be chosen

G1 G2 M1 M6 2 3
4

1
Entry Hand-off

Reject
Exit

Resource
 Events
 Resource
 Events

Gantry
 Start waiting
 CNCi
 Blocked

End waiting
 Wait Aux

Leave w/o waiting
 Part not present

Pick up raw part
 Cycle end

Part at inspection

Part at exit

Arrive at CNCi
 41

Building model from data

•  One process for gantry, one for each CNC

•  Exclude sections of data when gantry or

CNC in “fault” state

•  Add CNCs Ready resource as combination

of all CNCs

42

Resources
 Acquire
 Release

Gantry G1
 Pick up raw part
 CNC wait aux fall

Gantry G2
 Arrive at CNCi
 Part at exit; inspection

Mi (CNCi)
 CNC cycle end rise
 CNC part unload

CNCs Ready
 Gantry end waiting
 CNC blocked

Sample
model with
one CNC
process

Anomaly detection results

•  Use part of data to build models

–  Other part to check for  

anomalies

–  Repeat with different  

subsets

•  Anomalies detected:

–  Gantry waiting while  
CNC blocked

–  Part dropped off at  
inspection station

43

Industry data
Gantry 

CNC3

Word 18 bits 8-10
give the CNC ID

Gantry 
CNC1

Gantry 
CNC2

Gantry 
CNC3

Gantry waiting: word
19 bit 9 is high

Gantry waiting: word
19 bit 9 is high

44

45

Outline

•  Motivating example

•  Anomaly detection method

•  Application to industrial system

•  Conclusions and future work

Conclusions & Future Work

•  Anomaly detection in event-based
systems without a formal model

–  Information on resources, processes & events

•  Multiple process models built to cope with
uncertainty about true behavior of system

–  Number of “whole” models can be quite large

–  Maintaining modularity through performance

assessment phase could reduce complexity

•  Application to off-line data

–  On-line detection could be implemented

–  On-line model building could consider and

evaluate multiple different sets of events
 46

47

Acknowledgements

•  NSF Engineering Research Center for
Reconfigurable Manufacturing Systems at
the University of Michigan

–  Prof. Yoram Koren, Director

•  Lindsay Allen, former PhD student

•  John Broderick, MS student

•  Industry partners

48

